

Self-Introduction

or "SUSY status at the LHC, focusing on $(g-2)_{\mu}$ anomaly & DM"

Sho IWAMOTO (岩本 祥)

Università degli Studi di Padova & INFN, Sezione di Padova → Eötvös Loránd Tudományegyetem (ELTE)

29 May 2019 Seminar @ ELTE

Based on

- Endo, Hamaguchi, Iwamoto, Yanagi [<u>1704.05287</u>]
- Endo, Hamaguchi, Iwamoto, Yoshinaga [<u>1303.4256</u>] and a few ongoing projects.

ATLAS & CMS have acquired data corresponding to ~140/fb.

New measurement of muon g-2 @ Fermilab is coming out soon.

[muon anomalous magnetic moment]

2020

2017	data taking: 2017–2020
2018	
2019	: First result will be published.

© 2017 Fermilab / Reidar Hahn

2021 : Final result will be published?

New measurement will judge the fate of muon g-2 anomaly.

 $a_{\mu}(\text{QED}) = (11658471.886 \pm 0.003) \times 10^{-10},$ $a_{\mu}(\text{EW}) = (15.36 \pm 0.11) \times 10^{-10},$

See also: QED: Laporta [1704.06996], Marguard et al. [1708.07138]. SM combination according to Jegerlehner [1804.07409]. HVP-LO: Keshavarzi, Nomura, Teubner [1802.02995] Aoyama, Hayakawa, Kinoshita, Nio [1205.5370] (cf. [1712.06060]) OED: HVP-HO: Kurz, Liu, Marquard, Steinhauser [1403.6400], EW: Gnendiger, Stöckinger, Stöckinger-Kim [1306.5546]. Jegerlehner, Nyffeler [0902.3360], HLbL: QCD: Jegerlehner [1711.06089] [1705.00263]. 4 /55 Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [1403.7512]

New measurement will judge the fate of muon g-2 anomaly.

SM cor QED: EW:	mbination according to Jegerlehner [<u>1804.07409</u>]. Aoyama, Hayakawa, Kinoshita, Nio [<u>1205.5370</u>] (cf. [<u>1712.06060</u>]). Gnendiger, Stöckinger, Stöckinger-Kim [<u>1306.5546</u>].	See also: QED: HVP-LO: HVP-HO: HUD:	Laporta [<u>1704.06996]</u> , Marquard et al. [<u>1708.07138]</u> . Keshavarzi, Nomura, Teubner [<u>1802.02995]</u> Kurz, Liu, Marquard, Steinhauser [<u>1403.6400]</u> , Jagerlebner, Nyffeler [0902.3360]	F	
QCD:	Jegerlehner [<u>1711.06089</u>] [<u>1705.00263</u>].	HLbL:	Jegerlehner, Nyffeler [0902.3360], Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [1403.7512]	5	/55

New measurement will judge the fate of muon g-2 anomaly.

New measurement will judge the fate of muon g-2 anomaly.

 a_{μ} (new physics) $\approx +10^{-10}$... w

... what does this imply?

Two main streams to explain the muon g-2 anomaly.

a)
$$10^{-10} \simeq \frac{\alpha_{\rm em}}{4\pi} \left(\frac{m_{\mu}}{M_{\rm NP} = 200 \,{\rm GeV}}\right)^2$$

O(100)GeV, electro/weak-charged new particle?

✓ the target of 2018-LHC. (as we saw)

✓ provided in TeV-scale SUSY. (as we will discuss)

main topic: "SUSY status at the LHC, focusing on $(g-2)_{\mu}$ anomaly & DM"

b)
$$10^{-10} \simeq \frac{\alpha_{\text{tiny}}}{4\pi} \left(\frac{m_{\mu}}{M_{\text{NP}} \sim 100 \,\text{MeV}}\right)^2$$

"dark photon" : extra-U(1) gauge boson acquiring tiny mass

and tiny interactions through kinetic mixing ... excluded

 $L_{\mu} - L_{\tau} \text{ gauge boson} : \simeq \text{ dark photon but no electron couplings}$ $L_{Z'} = e_{\mu} Z'_{\nu} [\bar{\mu} \gamma^{\nu} \mu - \bar{\tau} \gamma^{\nu} \tau + \bar{\nu_{\mu}} \gamma^{\nu} \nu_{\mu} - \bar{\nu_{\tau}} \gamma^{\nu} \nu_{\tau}]$ Gninenko, Krasnikov [ph/0102222], Baek, Deshpande, He, Ko [ph/0104141]

B /55

Two main streams to explain the muon g-2 anomaly.

and tiny interactions through kinetic mixing ... excluded

/55

 $L_{\mu} - L_{\tau} \text{ gauge boson} : \simeq \text{ dark photon but no electron couplings}$ $L_{Z'} = e_{\mu} Z'_{\nu} [\bar{\mu} \gamma^{\nu} \mu - \bar{\tau} \gamma^{\nu} \tau + \bar{\nu_{\mu}} \gamma^{\nu} \nu_{\mu} - \bar{\nu_{\tau}} \gamma^{\nu} \nu_{\tau}]$ Gninenko, Krasnikov [ph/0102222], Baek, Deshpande, He, Ko [ph/0104141]

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly

- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - it provides dark matter candidates, and
 - it was the main focus of recent LHC runs.
- **3**. Four typical scenarios, LHC status, and prospects:
 - "Chargino": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - "BHR" & "BHL": multi-tau + direct detections.

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly
 - > of myself
- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - it provides dark matter candidates, and
 - it was the main focus of recent LHC runs.
- 3. Four typical scenarios, LHC status, and prospects:
 - "Chargino": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - > "BHR" & "BHL": multi-tau + direct detections.

- 岩本祥 / Iwamoto Sho
 - > Japan/Tokyo \rightarrow Israel/Technion \rightarrow Italy/Padova (\rightarrow ELTE)
- 1. Collider phenomenology (+ detectors, statistics)
 - SUSY searches [this talk]
 - Meta-stable particle searches
- 2. Cosmology & astro-particle physics
 - Leptogenesis
- 3. Exotic dark matter scenarios
 - "hidden-color"ed dark matter

hidden-colored dark matter

M. Geller, Iwamoto, G. Lee, Y. Shadmi, O. Telem [1802.07720]

- Standard Model + extra SU(N)
 - SU(N): confining ... "hidden color"
- "hidden-quark" are stable.

 \rightarrow "baryons" are DM candidates.

cf.) top-quark decay: via weak-interaction

- What we did:
- calculate their bound-state wavefunctions,
- \succ calculate the DM annihilation rate σv ,
- \succ and estimate DM relic density Ωh^2

in a toy model.

"neutrino-option" leptogenesis

V. Brdar, A. Helmboldt, S. Iwamoto, K. Schmitz [1905.12634]

- neutrino mass
- leptogenesis
- "neutrino-option"

$$V_{\text{higgs}} = \lambda |\phi|^4 \quad \text{"conformal"}$$

$$\int \text{radiative corrections} \\ \text{from 10^7 GeV } N_{\text{R}}$$

$$V_{\text{higgs}} = \lambda' |\phi|^4 - \mu^2 |\phi|^2$$

What we proved:

"neutrino-option" is compatible with leptogenesis + neutrino mass.

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly
 - > of myself
- 2. SUSY with ~TeV non-colored superparticles: $\langle -$

- > it solves the $(g-2)_{\mu}$ anomaly,
- it provides dark matter candidates, and
- it was the main focus of recent LHC runs.
- 3. Four typical scenarios, LHC status, and prospects:
 - > "Chargino": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - > "BHR" & "BHL": multi-tau + direct detections.

* g-2 = anomalous magnetic moment

MSSM may solve several problems.

TeV-scale MSSM

- Gauge-coupling unification
- Negative mass in V_{higgs}
- > $(g-2)_{\mu}$ anomaly → next slides
- Hierarchy problem
- Dark matter problem ("WIMP miracle")

in simplest scenarios, (= DM as a thermal relic, freezing out by pair-annihilation)

$$\langle \sigma v \rangle_{\text{DM DM} \rightarrow \text{any}}$$
 should be ~ 3 × 10⁻²⁶ cm³/s = $\frac{a_{\text{em}}^2}{(150 \,\text{GeV})^2}$ \rightarrow DM @ ~0.1 TeV?

The lightest neutralino \bigotimes may be stable. \rightarrow DM candidate if ~(0.1 (or 0.1-2)) TeV.

depending on models, as we will discuss later.

$$\Omega_{\rm DM} h^2 \approx \frac{1.1 \times 10^9 \cdot x_{\rm f}}{\sqrt{g_*} M_{\rm pl} \langle \sigma v \rangle \cdot {\rm GeV}} \approx 0.1 \cdot \frac{15}{\sqrt{g_*}} \frac{x_{\rm f}}{30} \frac{3 \times 10^{-26} \,{\rm cm}^3/{\rm s}}{\langle \sigma v \rangle} \quad \text{with } x_{\rm f} = m_{\rm DM}/T_{\rm fo}.$$

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly
 - of myself
- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - it provides dark matter candidates, and
 - it was the main focus of recent LHC runs.
- 3. Four typical scenarios, LHC status, and prospects:
 - > "**Chargino**": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - > "BHR" & "BHL": multi-tau + direct detections.

Muon g-2 anomaly can be solved by MSSM.

 $W \ni \mu H_{\rm u} H_{\rm d}$ (higgsino mass term), $\tan \beta = \langle H_{\rm u} \rangle / \langle H_{\rm d} \rangle$, $m_{\rm soft}$: SUSY-particle mass-scale, g_i : gauge couplings. Lopez, Nanopoulos, Wang [ph/9308336] Chattopadhyay, Nath [ph/9507386] Moroi [ph/9512396]

SUSY contribution to muon g-2 : gauge basis

("mass insertion" technique)

SUSY contribution to muon g-2 : gauge basis

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly
 - of myself
- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - it provides dark matter candidates, and
 - it was the main focus of recent LHC runs.
- 3. Four typical scenarios, LHC status, and prospects:
 - "Chargino": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - > "BHR" & "BHL": multi-tau + direct detections.

MSSM is capable to provide a DM candidate; simplest scenarios. 0.1 10^{-2} <u>We assume Simplest W-DM scenario.</u> 1Õ-3 $\widehat{W} = \widetilde{B} \oplus \widetilde{W}^0 \oplus \widetilde{H}_d \oplus \widetilde{H}_u$ increasing $< \sigma v >$ DM is \mathfrak{M} , and was in thermal equilibrium in early Universe. \rightarrow freeze-out. $\langle \sigma v \rangle_{\text{DM DM} \rightarrow \text{anv}} \sim 3 \times 10^{-26} \,\text{cm}^3/\text{s}$ No other component of DM. \geq 0-12 -13 eq 🦉 is almost... $10^2 \quad 10^2$ time \rightarrow 10² 10^{1} m/T \succ pure- \widetilde{B} : almost no interactions \rightarrow \searrow over-abundant. (annihilation too small) \succ pure- \widetilde{H} : $\swarrow m_{DM} \sim 1 \text{ TeV}$ for correct abundance.

> pure- \widetilde{W} : $\sqrt{m_{DM}} \sim 2.5 \text{TeV}$ for correct abundance.

Simplest possibilities:

- Bino-like (100-500GeV) + <u>some mechanism</u> to reduce the relic density
 - Bino-slepton co-annihilation
 - H- or Z-resonance ("funnel")
 - 4th-generation leptons Abdullah, Feng [1510.06089], Abdullah, Feng, SI, Lillard [1608.00283]
- $\widetilde{H}
 -DM, \text{ or } \widetilde{B} \widetilde{H} \text{ mixed DM ("well-tempered") ...almost excluded by XENON1T} \\ (~1TeV) (100-1TeV) Badziak, Olechowski, Szczerbiak [1701.05869]$
- \rightarrow Bino-Wino mixed DM. ... theoretically not nice (100-2.5 TeV)

Figure from Gelmini and Gondolo, 1009.3690

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly
 - of myself
- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - > it provides **dark matter** candidates, and
 - it was the main focus of recent LHC runs. <</p>

- 3. Four typical scenarios, LHC status, and prospects:
 - "Chargino": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - > "BHR" & "BHL": multi-tau + direct detections.

What do we expect at the LHC?

LHC Run 2 coverage:

Up to 1 TeV (heavily depends on decay pattern)

24 /55

sleptons (e.g. 🕦) up to 500 GeV

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly
 - of myself: "Iwamoto Sho"
- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - it provides dark matter candidates, and
 - it was the main focus of recent LHC runs.
- 3. Four typical scenarios, LHC status, and prospects:
 - "Chargino": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - > "BHR" & "BHL": multi-tau + direct detections.

- 1. Introduction
 - ≻ $(g-2)_{\mu}$ anomaly
 - of myself: "Iwamoto Sho"
- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - it provides dark matter candidates, and
 - it was the main focus of recent LHC runs.
- **3**. Four typical scenarios, LHC status, and prospects:
 - "Chargino": multi-lepton signatures
 - "Pure-bino": di-lepton signatures
 - "BHR" & "BHL": multi-tau + direct detections.

SUSY contribution to muon g-2 : gauge basis

SUSY contribution to muon g-2 : gauge basis

- "Chargino contribution"
- $\propto g_2^2 \pmod{g_Y^2} \rightarrow \text{tends to be the dominant contribution.}$
- SU(2) pair \rightarrow [C'] $\simeq -0.5$ [C] $\rightarrow \mu > 0$ to be positive.
- Higgsino, Wino, and $\tilde{\mu}_{L}$ must be O(100)GeV.

$$F_{a}, F_{b} \text{ are loop functions and positive.}$$

$$F_{a}(x,y) = \frac{1}{2} \frac{C_{1}(x^{2}) - C_{1}(y^{2})}{x^{2} - y^{2}}, \qquad F_{b}(x,y) = -\frac{1}{2} \frac{N_{2}(x^{2}) - N_{2}(y^{2})}{x^{2} - y^{2}};$$

$$C_{1}(x) = \frac{3 - 4x + x^{2} + 2\log x}{(1 - x)^{3}}, \qquad N_{2}(x) = \frac{1 - x^{2} + 2x\log x}{(1 - x)^{3}}.$$

$$\frac{g_2^2 m_{\mu}^2}{8\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\nu}_{\mu}}^4} \cdot F_a\left(\frac{M_2}{m_{\widetilde{\nu}_{\mu}}}, \frac{\mu}{m_{\widetilde{\nu}_{\mu}}}\right)$$
$$-\frac{g_2^2 m_{\mu}^2}{16\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\mu}_{\rm L}}^4} \cdot F_b\left(\frac{M_2}{m_{\widetilde{\mu}_{\rm L}}}, \frac{\mu}{m_{\widetilde{\mu}_{\rm L}}}\right)$$

3 TeV cross section [fb]

Wino&Higgsino < TeV \rightarrow chargino scenario.

- $ightarrow \alpha g_2^2 \rightarrow$ relevant particles $\lesssim 1 \, \text{TeV}$
- DM: not considered here
 - $(g-2)_{\mu} \leftarrow (\widetilde{W}, \widetilde{H}, \widetilde{\mu}_{L});$ DM $\leftarrow (\widetilde{I}_{L}, \widetilde{B}) \dots$ "orthogonal"
 - co-annihilation or resonance may $(m_{\widetilde{B}} \simeq m_{\widetilde{l}})$ $(m_{\widetilde{B}} \simeq m_Z/2 \text{ or } m_h/2)$ may work.
- LHC: Wino pair-production

 $\sigma(pp \rightarrow \widetilde{W}\widetilde{W})_{14 \text{ TeV}} \sim 50 \text{ fb } @ m_{\widetilde{W}} = 500 \text{ GeV}$ 1 TeV 1.5 fb

(1) "Chargino" scenario \rightarrow Wino pair-production gives 3-lepton signature.

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

 $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{+} \rightarrow 3\ell + \text{mET}$ *Z*-unlike

(1) "Chargino" scenario \rightarrow Wino pair-production gives 3-lepton signature.

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

 $x_\ell \sim 0.5$

 $x_{\ell} \sim 1$

 $x_{\ell} \sim 0$

(1) "Chargino" scenario \rightarrow Wino pair-production gives 3-lepton signature.

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

"Chargino" scenario may give multi-lepton signature. Endo, Hamaguchi, SI, Yoshinaga [1303.4256]

"Chargino" scenario may give multi-lepton signature. Endo, Hamaguchi, SI, Yoshinaga [1303.4256]

(2) "Pure-bino" scenario: it has " μ -term enhancement."

(2) "Pure-bino" scenario: it has "µ-term enhancement."

• "pure-Bino contribution": Bino and $\tilde{\mu}_L, \tilde{\mu}_R$ must be O(100)GeV.

Higgsino and Wino can be any heavy.

 $\square \propto \mu \tan \beta \rightarrow$ heavier Higgsino gives larger contribution.

$$\begin{bmatrix} \mathsf{B} \end{bmatrix} \quad \frac{g_Y^2 m_\mu^2}{8\pi^2} \frac{\mu \tan \beta}{M_1^3} \quad \cdot F_b\left(\frac{m_{\widetilde{\mu}_{\mathrm{L}}}}{M_1}, \frac{m_{\widetilde{\mu}_{\mathrm{R}}}}{M_1}\right)$$

$$F_{a}, F_{b} \text{ are loop functions and positive.}$$

$$F_{a}(x,y) = \frac{1}{2} \frac{C_{1}(x^{2}) - C_{1}(y^{2})}{x^{2} - y^{2}}, \qquad F_{b}(x,y) = -\frac{1}{2} \frac{N_{2}(x^{2}) - N_{2}(y^{2})}{x^{2} - y^{2}};$$

$$C_{1}(x) = \frac{3 - 4x + x^{2} + 2\log x}{(1 - x)^{3}}, \qquad N_{2}(x) = \frac{1 - x^{2} + 2x\log x}{(1 - x)^{3}}.$$

(2) "Pure-bino" scenario: it has "µ-term enhancement."

Endo, Hamaguchi, Kitahara, Yoshinaga [1309.3065]

$$\frac{g_Y^2 m_\mu^2}{8\pi^2} \frac{\mu \tan\beta}{M_1^3} \cdot F_b \left(\frac{m_{\widetilde{\mu}_{\rm L}}}{M_1}, \frac{m_{\widetilde{\mu}_{\rm R}}}{M_1}\right)$$

from $M_{\widetilde{\mu}}^2 = \begin{pmatrix} m(l_{\rm L})^2 & m_\mu(A_\mu^* - \mu \tan\beta) \\ m_\mu(A_\mu^* - \mu \tan\beta) & m(l_{\rm R})^2 \end{pmatrix}$

μ tan β has upper bounds:

$$V_{\text{Higgs}} \supset -\left(m_{\tau} \,\mu \tan\beta \cdot \widetilde{\tau}_{\text{L}}^{*} \widetilde{\tau}_{\text{R}} h\right) \\ + m_{\mu} \,\mu \tan\beta \cdot \widetilde{\mu}_{\text{L}}^{*} \widetilde{\mu}_{\text{R}} h\right)$$

$$m_{\tilde{\tau}}/m_{\tilde{\mu}}$$

$$= 1 \implies m_{\tilde{\mu}} \lesssim 300(420) \,\text{GeV}$$

$$= 2 \implies \qquad \lesssim 440(620) \,\text{GeV}$$

$$= \infty \implies \qquad \lesssim 1.4(1.9) \,\text{TeV}$$

(2) "Pure-bino" scenario \rightarrow Slepton production only is available; less constrained.

- Higgsino > TeV \rightarrow pure-Bino scenario.
 - \succ µ-enhancement v.s. vacuum stability
 - > DM: not considered here ("orthogonal")
 - co-annihilation or resonance may work.

0.1

200

- LHC: only slepton pair-production
 - small cross section: 0.47 (0.18) fb for 500 GeV $\tilde{\ell}_{L}$ ($\tilde{\ell}_{R}$)
 - "di-lepton + missing" signature ... not easy.

600

400 mass [GeV] 800

1000

(3) "BHR" scenario: negative μ -term; "BHL" scenario: nothing special.

(3) "BHR" scenario: negative μ -term; "BHL" scenario: nothing special.

- "BHR contribution" (Bino, Higgsino, $\tilde{\mu}_R$ must be O(100)GeV)
- If µ-parameter < 0, this is the only viable contribution. (Higgsino-mass parameter)
- "BHL contribution" (Bino, Higgsino, $\tilde{\mu}_{L}$ must be O(100)GeV)
 - \succ nothing special.

(3) "BHR"/"BHR": Higgsino production provides multi-tau signature.

■ Wino >> TeV & Higgsino < TeV → BHL or BHR scenario. $(\mu > 0)$ $(\mu < 0)$

- > $\propto g_v^2$ → relevant particles \lesssim 500 GeV
- > LHC: $pp \rightarrow \tilde{H}^+ \tilde{H}^0$, $\tilde{H}^+ \tilde{H}^-$ "not much, but enough"
- Excl. by XENON1T
 DM: Bino Higgsino mixing, bino-slepton co-annihilation.

(3) "BHR"/"BHR": Higgsino production provides multi-tau signature.

- Wino >> TeV & Higgsino < TeV → BHL or BHR scenario. $(\mu > 0)$ $(\mu < 0)$
 - > $\propto g_v^2$ → relevant particles \lesssim 500 GeV
 - > LHC: $pp \rightarrow \tilde{H}^+ \tilde{H}^0$, $\tilde{H}^+ \tilde{H}^-$ "not much, but enough"
 - Excl. by XENON1T
 DM: Bino Higgsino mixing, bino slepton co-annihilation.

(3) "BHR"/"BHR": Higgsino production provides multi-tau signature.

- Bino-slepton (stau) co-annihilation $\rightarrow m_{\tilde{v}_{\tau}}$ (or $m_{\tilde{\tau}_R}$) $\simeq m_{\tilde{B}}$.
- We assumed:
 - slepton universality,
 - DM density is realized at each point in the plots.
 - $\rightarrow m_{\widetilde{B}} \lesssim m_{\widetilde{\mu}} < m_{\widetilde{H}}$ $(\sim M_1) (\sim \mu)$

■ HL-LHC?

- $> pp \rightarrow \widetilde{H}^+ \widetilde{H}^0, \ \widetilde{H}^+ \widetilde{H}^-$
- $\widetilde{H}^0 \to \tau \widetilde{\tau}, \ \widetilde{H}^+ \to \tau \widetilde{v}_{\tau}$ because of tan β
- \rightarrow multi-tau signature

(3) "BHR"/"BHR": Higgsino production provides multi-tau signature.

tanβ

tanβ

(3) "BHR"/"BHR": Higgsino production provides multi-tau signature.

- Wino >> TeV & Higgsino < TeV \rightarrow BHL or BHR scenario.
 - ▷ DM: Bino-stau co-annihilation $\rightarrow m_{\tilde{B}} \simeq (m_{\tilde{\tau}_R} \text{ or } m_{\tilde{\nu}_\tau}) \leq m_{\tilde{\mu}} < m_{\tilde{H}}$

 $(\mu > 0)$

(u < 0)

- ▷ DM has small Higgsino component → LUX/XENON1T constraint.
- > LHC: $pp \rightarrow \tilde{H}^+ \tilde{H}^0$, $\tilde{H}^+ \tilde{H}^-$; $\tilde{H} \rightarrow \tau + \cdots$ "**2\tau+missing**" signature

Muon g-2 vs LHC: four scenarios

- 1. Introduction
 - > of $(g-2)_{\mu}$ anomaly
 - of myself: "Iwamoto Sho"
 - 1. collider phenomenology (SUSY, meta-stable particles, ...)
 - 2. **cosmology** & astro-particle physics (leptogenesis, cosmic-rays, ...)
 - 3. exotic DM models (hidden-colored DM)
- 2. SUSY with ~TeV non-colored superparticles:
 - > it solves the $(g-2)_{\mu}$ anomaly,
 - it provides dark matter candidates, and
 - it was the main focus of recent LHC runs.
- 3. Four typical scenarios, LHC status, and prospects.

Summary

