

MSSM in light of $(g-2)_{\mu}$ anomaly and dark matter

Sho IWAMOTO (岩本 祥)

Università degli Studi di Padova & INFN, Sezione di Padova

13 Dec. 2018 Seminar @ Uniwersytet Warszawski

Based on

- Endo, Hamaguchi, Iwamoto, Yanagi [1704.05287]
- Endo, Hamaguchi, Iwamoto, Yoshinaga [<u>1303.4256</u>] and a few ongoing projects.

1. Introduction

- SUSY @ LHC
- > $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- "BHR" & "BHL": multi-tau + direct detections.

10 years ago, we had nice motivations for LHC.

• LHC \equiv to discover (0.1–1) TeV particles.

> Higgs 🗸

- > $(g-2)_{\mu}$ anomaly → next slides
- Hierarchy problem

$$m_h^2 \sim m_{\text{bare}}^2 + \Delta m_h^2$$
, $\Delta m_h^2(\text{SM}) \sim -\frac{3|\lambda|^2}{8\pi^2} \Lambda_{\text{cutoff}}^2 + \text{finite.}$
 \downarrow
 $(100 \,\text{GeV})^2 \sim \Lambda_{\text{cutoff}}^2 - \Lambda_{\text{cutoff}}^2 \longrightarrow \Lambda_{\text{cutoff}} \sim 0.1 - 1 \,\text{TeV} = \text{new physics?}$

Dark matter "WIMP miracle"

simplest scenario = DM as a thermal relic, freezing out by pair-annihilation:

$$\langle \sigma v \rangle_{\text{DM DM} \to \text{any}}$$
 should be ~ 3 × 10⁻²⁶ cm³/s = $\frac{\alpha_{\text{em}}^2}{(150 \,\text{GeV})^2}$

→ DM @ ~100 GeV?

$$\Omega_{\rm DM}h^2 \approx \frac{1.1 \times 10^9 \cdot x_{\rm f}}{\sqrt{g_*}M_{\rm pl}\langle\sigma v\rangle \cdot {\rm GeV}} \approx 0.1 \cdot \frac{15}{\sqrt{g_*}} \frac{x_{\rm f}}{30} \frac{3 \times 10^{-26} \,{\rm cm}^3/{\rm s}}{\langle\sigma v\rangle} \quad \text{with } x_{\rm f} = m_{\rm DM}/T_{\rm fo}.$$

Muon g-2 SM expectation : $3-4\sigma$ discrepancy!

 $a_{\mu}(\text{QED}) = (11658471.886 \pm 0.003) \times 10^{-10},$ $a_{\mu}(\text{EW}) = (15.36 \pm 0.11) \times 10^{-10},$

See also: QED: Laporta [1704.06996], Marquard et al. [1708.07138]. SM combination according to Jegerlehner [1804.07409]. HVP-LO: Keshavarzi, Nomura, Teubner [1802.02995] Aoyama, Hayakawa, Kinoshita, Nio [1205.5370] (cf. [1712.06060]) QED: HVP-HO: Kurz, Liu, Marquard, Steinhauser [1403.6400], EW: Gnendiger, Stöckinger, Stöckinger-Kim [1306.5546] HLbL: Jegerlehner, Nyffeler [0902.3360], QCD: Jegerlehner [1711.06089] [1705.00263]. 4 /58 Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [1403.7512]

SM cor QED: EW:	mbination according to Jegerlehner [<u>1804.07409</u>]. Aoyama, Hayakawa, Kinoshita, Nio [<u>1205.5370</u>] (cf. [<u>1712.06060</u>]). Gnendiger, Stöckinger, Stöckinger-Kim [<u>1306.5546</u>].	See also QED: HVP-LO: HVP-HO: HI bl ·	: Laporta [<u>1704.06996]</u> , Marquard et al. [<u>1708.07138</u> Keshavarzi, Nomura, Teubner [<u>1802.02995]</u> Kurz, Liu, Marquard, Steinhauser [<u>1403.6400]</u> , Jegerlehner, Nyffeler [0902.3360]]. [FermiLab: ±1	1.6]
QCD:	Jegerlehner [<u>1711.06089</u>] [<u>1705.00263</u>].	HLbL:	Jegerlehner, Nyffeler [0902.3360], Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [1	403.7512] 5,	/58

10 years ago, we had nice motivations for LHC.

■ LHC \equiv to discover (0.1–1) TeV particles.

> Higgs ✓
> (g-2)_µ anomaly →
$$\Delta a_{µ} = 10 \times 10^{-10} \approx \frac{a_{em}}{4\pi} \left(\frac{m_{µ}}{200 \text{ GeV}}\right)^{2}$$
> Hierarchy problem
$$m_{h}^{2} \sim m_{bare}^{2} + \Delta m_{h}^{2}, \quad \Delta m_{h}^{2}(SM) \sim -\frac{3|\lambda|^{2}}{8\pi^{2}}\Lambda_{cutoff}^{2} + \text{finite.}$$

$$(100 \text{ GeV})^{2} \sim \Lambda_{cutoff}^{2} - \Lambda_{cutoff}^{2} \rightarrow \Lambda_{cutoff} \sim 0.1 - 1 \text{ TeV} = \text{new physics?}$$

Dark matter "WIMP miracle"

simplest scenario = DM as a thermal relic, freezing out by pair-annihilation:

$$\langle \sigma v \rangle_{\text{DMDM} \to \text{any}}$$
 should be ~ 3 × 10⁻²⁶ cm³/s = $\frac{a_{\text{em}}^2}{(150 \,\text{GeV})^2}$

→ DM @ ~100 GeV?

$$\Omega_{\rm DM}h^2 \approx \frac{1.1 \times 10^9 \cdot x_{\rm f}}{\sqrt{g_*}M_{\rm pl}\langle\sigma v\rangle \cdot {\rm GeV}} \approx 0.1 \cdot \frac{15}{\sqrt{g_*}} \frac{x_{\rm f}}{30} \frac{3 \times 10^{-26} \,{\rm cm}^3/{\rm s}}{\langle\sigma v\rangle} \quad \text{with } x_{\rm f} = m_{\rm DM}/T_{\rm fo}.$$

MSSM = SUSY version of the Standard Model

■ LHC \equiv to discover (0.1–1) TeV particles.

➢ Higgs

 \succ $(g-2)_{\mu}$ anomaly :

 $\widetilde{\chi}^{\pm} + \widetilde{\chi}^{0}$

may explain the anomaly

if these particles are O(100) GeV.

(we'll discuss later.)

Hierarchy problem

$$m_h^2 \sim m_{\text{bare}}^2 + \Delta m_h^2, \qquad \Delta m_h^2(\text{MSSM}) \sim -\frac{3|\lambda|^2}{8\pi^2} \Lambda_{\text{cutoff}}^2 + \left(2 \times \frac{3|\lambda|^2}{16\pi^2} \Lambda_{\text{cutoff}}^2\right) + O(\log \Lambda_{\text{cutoff}}).$$

$$h = -- \int_{h \to ---h}^{t} \int_{h \to ----h}^{t} h = ----h$$

Dark matter "WIMP miracle"

The lightest neutralino

may be stable. \rightarrow DM?

$$\widetilde{\chi}_{1-4}^0 = \widetilde{B} \oplus \widetilde{W}^0 \oplus \widetilde{H}_d \oplus \widetilde{H}_u, \quad \widetilde{\chi}_{1,2}^{\pm} = \widetilde{W}^{\pm} \oplus \widetilde{H}^{\pm}.$$

LO /58

■ LHC \equiv to discover (0.1–1) TeV particles.

➢ Higgs

 \succ $(g-2)_{\mu}$ anomaly :

 $\widetilde{\chi}^{\pm} + \widetilde{\chi}^{0}$

may explain the anomaly

if these particles are O(100) GeV.

(we'll discuss later.)

Hierarchy problem

$$m_h^2 \sim m_{\text{bare}}^2 + \Delta m_h^2$$
, $\Delta m_h^2(\text{MSSM}) \sim -\frac{3y_t^2}{4\pi^2} m_{\tilde{t}}^2 \log \frac{\Lambda_{\text{cutoff}}}{m_{\tilde{t}}}$

Dark matter "WIMP miracle"

The lightest neutralino \bigwedge may be stable. \rightarrow DM?

$$\widetilde{\chi}_{1-4}^0 = \widetilde{B} \oplus \widetilde{W}^0 \oplus \widetilde{H}_{\mathsf{d}} \oplus \widetilde{H}_{\mathsf{u}}, \quad \widetilde{\chi}_{1,2}^{\pm} = \widetilde{W}^{\pm} \oplus \widetilde{H}^{\pm}.$$

LHC \equiv to discover (0.1–1) TeV particles.

➢ Higgs

may explain the anomaly

if these particles are O(100) GeV.

(we'll discuss later.)

Hierarchy problem $m_h^2 \sim m_{\text{bare}}^2 + \Delta m_h^2$, Δm_h^2 (MSSM) $\sim -\frac{3y_t^2}{4\pi^2}m_{\widetilde{t}}^2\log\frac{\Lambda_{\text{cutoff}}}{m_{\widetilde{t}}}$ $\lesssim 1 \,\text{TeV}!$ = colored particle Dark matter "WIMP miracle" → easier @ LHC The lightest neutralino \rightarrow strongly constrained. may be stable. \rightarrow DM? $\widetilde{\chi}_{1-4}^{0} = \widetilde{B} \oplus \widetilde{W}^{0} \oplus \widetilde{H}_{d} \oplus \widetilde{H}_{u}, \quad \widetilde{\chi}_{12}^{\pm} = \widetilde{W}^{\pm} \oplus \widetilde{H}^{\pm}.$

1. Introduction

> SUSY @ LHC

> $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- "BHR" & "BHL": multi-tau + direct detections.

Muon g-2 anomaly: What is the origin?

- Just a statistical fluctuation.
- Just an issue in the experiment.
- \succ O(100) GeV particles with O(0.1) couplings 10 × 1
 - MSSM
- keV–MeV particles with tiny couplings.
 - dark photon (extra U(1) gauge boson)
 - extra $L_{\mu}-L_{\tau}$ gauge boson

Gninenko, Krasnikov [ph/0102222], Baek, Deshpande, He, Ko [ph/0104141]

$$a_{\mu}(\text{NP})? \dots 10 \times 10^{-10} \approx \frac{\alpha_{\text{em}}}{4\pi} \left(\frac{m_{\mu}}{200 \,\text{GeV}}\right)^2$$

$$10^{-10} \approx \frac{a_{\rm em}}{4\pi} \left(\frac{m_{\mu}}{m_{\rm new}}\right)^2$$

$$10 \times 10^{-10} \approx \frac{(\varepsilon^2/4\pi)}{4\pi} \left(\frac{m_{\mu}}{m_{\text{new}}}\right)^2$$

Muon g-2 anomaly: What is the origin?

- Just a statistical fluctuation.
- Just an issue in the experiment.
- \succ O(100) GeV particles with O(0.1) cour
 - MSSM
- keV–MeV particles with tiny coupling
 - dark photon (extra U(1) gauge boson)

coupling \mathbf{e}_{μ} 10 4864- ANIO2 EOT Borexino 10 ⁻³ BABAR (9-2). NA64, AND³ EOT 10 NA64, 10¹² MOT **BBN** 10 10³ 10² 10 m_{z′}, MeV

Gninenko, Krasnikov [ph/0102222], Baek, Deshpande, He, Ko [ph/0104141]

$$L_{Z'} = e_{\mu} Z'_{\nu} [\bar{\mu} \gamma^{\nu} \mu - \bar{\tau} \gamma^{\nu} \tau + \bar{\nu_{\mu}} \gamma^{\nu} \nu_{\mu} - \bar{\nu_{\tau}} \gamma^{\nu} \nu_{\tau}]$$

 10^{-2}

 10^{-3}

10-4 10-3 (g-2)

Gninenko, Krasnikov [1801.10448]

 $K \rightarrow \pi \nu$

1. Introduction

- > SUSY @ LHC
- > $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- "BHR" & "BHL": multi-tau + direct detections.

Muon g-2 anomaly can be solved by MSSM.

$$a_{\mu}^{\text{SUSY}}\left(\tilde{\chi}^{0},\tilde{\mu}\right) \approx \frac{g_{Y}^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2}}{m_{\text{soft}}^{2}} \operatorname{sgn}(\mu) \tan\beta + \cdots,$$
$$a_{\mu}^{\text{SUSY}}\left(\tilde{\chi}^{\pm},\tilde{\nu}_{\mu}\right) \approx \frac{g_{2}^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2}}{m_{\text{soft}}^{2}} \operatorname{sgn}(\mu) \tan\beta.$$

• lighter SUSY-particles \implies larger a_{μ}^{SUSY} • larger tan β

 $W \ni \mu H_{\rm u} H_{\rm d}$ (higgsino mass term), $\tan \beta = \langle H_{\rm u} \rangle / \langle H_{\rm d} \rangle$, $m_{\rm soft}$: SUSY-particle mass-scale, g_i : gauge couplings. Lopez, Nanopoulos, Wang [ph/9308336] Chattopadhyay, Nath [ph/9507386] Moroi [ph/9512396] **19** /58 SUSY contribution to muon g-2 : gauge basis

("mass insertion" technique)

SUSY contribution to muon g-2 : gauge basis

SUSY contribution to muon g-2: (1) "Chargino" contributions

- "Chargino contribution"
- $\propto g_2^2 \pmod{g_Y^2} \rightarrow \text{tends to be the dominant contribution.}$
- SU(2) pair \rightarrow [C'] $\simeq -0.5$ [C] $\rightarrow \mu > 0$ to be positive.
- Higgsino, Wino, and $\tilde{\mu}_{L}$ must be O(100)GeV.

$$F_{a}, F_{b} \text{ are loop functions and positive.}$$

$$F_{a}(x,y) = \frac{1}{2} \frac{C_{1}(x^{2}) - C_{1}(y^{2})}{x^{2} - y^{2}}, \qquad F_{b}(x,y) = -\frac{1}{2} \frac{N_{2}(x^{2}) - N_{2}(y^{2})}{x^{2} - y^{2}};$$

$$C_{1}(x) = \frac{3 - 4x + x^{2} + 2\log x}{(1 - x)^{3}}, \qquad N_{2}(x) = \frac{1 - x^{2} + 2x\log x}{(1 - x)^{3}}.$$

SUSY contribution to muon g-2: (1) "Chargino" contributions

SUSY contribution to muon g-2: (2) BHR contribution

SUSY contribution to muon g-2: (2) BHR contribution

 $\blacksquare \propto g_v^2$

- **I** "BHR contribution" (Bino, Higgsino, $\tilde{\mu}_{R}$ must be O(100)GeV)
- If µ-parameter < 0, this is the only viable contribution. (Higgsino-mass parameter)

 $\begin{bmatrix} \mathsf{BHR} \end{bmatrix} - \frac{g_Y^2 m_\mu^2}{8\pi^2} \frac{M_1 \mu \tan \beta}{m_{\widetilde{\mu}_{\mathrm{R}}}^4} \cdot F_b \left(\frac{M_1}{m_{\widetilde{\mu}_{\mathrm{R}}}}, \frac{\mu}{m_{\widetilde{\mu}_{\mathrm{R}}}} \right)$

$$F_{a}, F_{b} \text{ are loop functions and positive.}$$

$$F_{a}(x,y) = \frac{1}{2} \frac{C_{1}(x^{2}) - C_{1}(y^{2})}{x^{2} - y^{2}}, \qquad F_{b}(x,y) = -\frac{1}{2} \frac{N_{2}(x^{2}) - N_{2}(y^{2})}{x^{2} - y^{2}};$$

$$C_{1}(x) = \frac{3 - 4x + x^{2} + 2\log x}{(1 - x)^{3}}, \qquad N_{2}(x) = \frac{1 - x^{2} + 2x\log x}{(1 - x)^{3}}.$$

SUSY contribution to muon g-2: (3) pure-Bino contribution

SUSY contribution to muon g-2: (3) pure-Bino contribution

■ "pure-Bino contribution": Bino and $\tilde{\mu}_L$, $\tilde{\mu}_R$ must be O(100)GeV.

Higgsino and Wino can be any heavy.

 $\square \propto \mu \tan \beta \rightarrow$ heavier Higgsino gives larger contribution.

$$\begin{bmatrix} \mathsf{B} \end{bmatrix} \quad \frac{g_Y^2 m_\mu^2}{8\pi^2} \frac{\mu \tan \beta}{M_1^3} \quad \cdot F_b\left(\frac{m_{\widetilde{\mu}_{\mathrm{L}}}}{M_1}, \frac{m_{\widetilde{\mu}_{\mathrm{R}}}}{M_1}\right)$$

$$\begin{cases} F_{a}, F_{b} \text{ are loop functions and positive.} \\ F_{a}(x,y) = \frac{1}{2} \frac{C_{1}(x^{2}) - C_{1}(y^{2})}{x^{2} - y^{2}}, & F_{b}(x,y) = -\frac{1}{2} \frac{N_{2}(x^{2}) - N_{2}(y^{2})}{x^{2} - y^{2}}; \\ C_{1}(x) = \frac{3 - 4x + x^{2} + 2\log x}{(1 - x)^{3}}, & N_{2}(x) = \frac{1 - x^{2} + 2x\log x}{(1 - x)^{3}}. \end{cases}$$

SUSY contribution to muon g-2: (3) pure-Bino contribution

Endo, Hamaguchi, Kitahara, Yoshinaga [1309.3065]

$$\frac{g_Y^2 m_\mu^2}{8\pi^2} \frac{\mu \tan \beta}{M_1^3} \cdot F_b \left(\frac{m_{\widetilde{\mu}_{\rm L}}}{M_1}, \frac{m_{\widetilde{\mu}_{\rm R}}}{M_1} \right)$$

from $M_{\widetilde{\mu}}^2 = \begin{pmatrix} m(l_{\rm L})^2 & m_\mu (A_\mu^* - \mu \tan \beta) \\ m_\mu (A_\mu^* - \mu \tan \beta) & m(l_{\rm R})^2 \end{pmatrix}$

μ tan β has upper bounds:

$$V_{\text{Higgs}} \supset -\left(m_{\tau} \,\mu \tan\beta \cdot \widetilde{\tau}_{\text{L}}^{*} \widetilde{\tau}_{\text{R}} h\right) \\ + m_{\mu} \,\mu \tan\beta \cdot \widetilde{\mu}_{\text{L}}^{*} \widetilde{\mu}_{\text{R}} h\right)$$

$$m_{\tilde{\tau}}/m_{\tilde{\mu}}$$

$$= 1 \implies m_{\tilde{\mu}} \lesssim 300(420) \,\text{GeV}$$

$$= 2 \implies \qquad \lesssim 440(620) \,\text{GeV}$$

$$= \infty \implies \qquad \lesssim 1.4(1.9) \,\text{TeV}$$

SUSY contribution to muon g-2: (4) BHL contribution

■ "BHL contribution" (Bino, Higgsino, µ̃_L must be O(100)GeV)
 ■ nothing special.

$$\begin{bmatrix} \mathsf{BHL} \end{bmatrix} \quad \frac{g_Y^2 m_\mu^2}{16\pi^2} \frac{M_1 \mu \tan\beta}{m_{\widetilde{\mu}_{\mathrm{L}}}^4} \cdot F_b\left(\frac{M_1}{m_{\widetilde{\mu}_{\mathrm{L}}}}, \frac{\mu}{m_{\widetilde{\mu}_{\mathrm{L}}}}\right)$$

$$F_{a}, F_{b} \text{ are loop functions and positive.}$$

$$F_{a}(x,y) = \frac{1}{2} \frac{C_{1}(x^{2}) - C_{1}(y^{2})}{x^{2} - y^{2}}, \qquad F_{b}(x,y) = -\frac{1}{2} \frac{N_{2}(x^{2}) - N_{2}(y^{2})}{x^{2} - y^{2}};$$

$$C_{1}(x) = \frac{3 - 4x + x^{2} + 2\log x}{(1 - x)^{3}}, \qquad N_{2}(x) = \frac{1 - x^{2} + 2x\log x}{(1 - x)^{3}}.$$

SUSY contribution to muon g-2 : gauge basis

1. Introduction

- > SUSY @ LHC
- > $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- "BHR" & "BHL": multi-tau + direct detections.

How can we explain the dark matter relic density?

Relic Density?

 \rightarrow depends on thermal history of Univ.

- \succ too much \rightarrow some mechanism to reduce.
- > too little \rightarrow late production or other DM.

→ Let's discuss simplest case!

Possibilities:

- (100 500 GeV)
- Higgsino DM, or Bino-Higgsino mixed DM ("well-tempered scenario") (100-1TeV)
- Bino-like + some mechanism to reduce the relic density

- > pure-Higgsino $\rightarrow m_{LSP} \sim 1 \text{TeV}$ for correct abundance.
- \succ pure-Bino \rightarrow almost no interaction \rightarrow over-abundant.

- > pure-Wino $\rightarrow m_{LSP} \sim 2.5 \text{TeV}$ for correct abundance.

- $\cdots \langle \sigma v \rangle_{\text{DM DM} \rightarrow \text{any}} \sim 3 \times 10^{-26} \text{ cm}^3/\text{s}$

No other component of DM.

is almost...

 \blacksquare If $\widetilde{\chi}^0$

How can we explain the dark matter relic density?

 10^{-2} increasing $< \sigma v >$ Y_{eq} 10^{1} 10^{2} 10^{3} timem

Figure from Gemmand Gondolo, 1009.309

1. Introduction

- > SUSY @ LHC
- > $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- "BHR" & "BHL": multi-tau + direct detections.

1. Introduction

- > SUSY @ LHC
- > $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- "BHR" & "BHL": multi-tau + direct detections.

Muon g-2 vs LHC (1) Wino & Higgsino < 1TeV \rightarrow "Chargino" scenario

Muon g−2 vs LHC (1) Wino & Higgsino < 1TeV \rightarrow "Chargino" scenario

$$\frac{g_2^2 m_{\mu}^2}{8\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\nu}_{\mu}}^4} \cdot F_a\left(\frac{M_2}{m_{\widetilde{\nu}_{\mu}}}, \frac{\mu}{m_{\widetilde{\nu}_{\mu}}}\right)$$
$$-\frac{g_2^2 m_{\mu}^2}{16\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\mu}_{\rm L}}^4} \cdot F_b\left(\frac{M_2}{m_{\widetilde{\mu}_{\rm L}}}, \frac{\mu}{m_{\widetilde{\mu}_{\rm L}}}\right)$$

 \square Wino&Higgsino < TeV \rightarrow chargino scenario.

- $> \propto g_2^2$ → relevant particles $\lesssim 1 \text{ TeV}$
- DM: not considered here
 - $(g-2)_{\mu} \leftarrow (\widetilde{W}, \widetilde{H}, \widetilde{\mu}_{L});$ DM $\leftarrow (\widetilde{I}_{L}, \widetilde{B}) \dots$ "orthogonal"
 - co-annihilation or resonance may work. $(m_{\tilde{B}} \simeq m_{\tilde{I}})$ $(m_{\tilde{B}} \simeq m_Z/2 \text{ or } m_h/2)$
- LHC: Wino pair-production

$$\sigma(pp \rightarrow \widetilde{W}\widetilde{W})_{14 \text{ TeV}} \sim 50 \text{ fb } @ m_{\widetilde{W}} = 500 \text{ GeV}$$

1.5 fb 1 TeV

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

 $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{+} \rightarrow ZW/hW + mET$ ($\rightarrow 3\ell + mET$) but Z-like leptons

 $\tilde{\chi}_2^0 \tilde{\chi}_1^+ \rightarrow 3\ell + \text{mET}$ Z-unlike

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

 $x_\ell \sim 0.5$

 $x_{\ell} \sim 1$

 $x_{\ell} \sim 0$

 $x_\ell \sim 0.5$

 $x_\ell \sim 0$

1. Introduction

- > SUSY @ LHC
- > $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- "BHR" & "BHL": multi-tau + direct detections.

SUSY contribution to muon g-2 : gauge basis

• Higgsino > TeV \rightarrow pure-Bino scenario.

- \succ µ-enhancement v.s. vacuum stability
- > DM: not considered here ("orthogonal")
 - co-annihilation or resonance may work.

$$\mathsf{B} = \frac{g_Y^2 m_{\mu}^2}{8\pi^2} \left(\underbrace{\boldsymbol{\mu}\text{-enhancement}}_{\mathbf{M}_1}, \frac{m_{\widetilde{\mu}_{\mathrm{R}}}}{M_1} \right)$$

LHC: only slepton pair-production

- small cross section: 0.47 (0.18) fb for 500 GeV $\tilde{\ell}_{L}$ ($\tilde{\ell}_{R}$)
- "di-lepton + missing" signature ... not easy.

Muon g-2 vs LHC (2) Pure-bino contribution results in slepton pair-production

1. Introduction

- > SUSY @ LHC
- > $(g-2)_{\mu}$ anomaly

2. MSSM to solve $\Delta(g-2)_{\mu}$: Overview

- Dark Matter
- > LHC

3. MSSM to solve $\Delta(g-2)_{\mu}$: 4 solutions

- "Chargino": multi-lepton = promising!
- "Pure-bino": di-lepton (but not sufficient)
- > "BHR" & "BHL": multi-tau + direct detections.

Wino >> TeV & Higgsino < TeV \rightarrow BHL or BHR scenario.

- > $\propto g_Y^2$ → relevant particles \lesssim 500 GeV
- > LHC: $pp \rightarrow \tilde{H}^+ \tilde{H}^0$, $\tilde{H}^+ \tilde{H}^-$ "not much, but enough"
- DM: Bino Higgsino mixing, bino-slepton co-annihilation.

■ Wino >> TeV & Higgsino < TeV → BHL or BHR scenario. $(\mu > 0)$ $(\mu < 0)$

- > $\propto g_v^2$ → relevant particles \lesssim 500 GeV
- > LHC: $pp \rightarrow \tilde{H}^+ \tilde{H}^0$, $\tilde{H}^+ \tilde{H}^-$ "not much, but enough"
- excl. by XENON1T
 DM: Bino Higgsino mixing, bino slepton co-annihilation.

- Bino-slepton (stau) co-annihilation $\rightarrow m_{\tilde{v}_{\tau}}$ (or $m_{\tilde{\tau}_R}$) $\simeq m_{\tilde{B}}$.
- We assumed:
 - slepton universality,
 - DM density is realized at each point in the plots.
 - $\rightarrow m_{\widetilde{B}} \lesssim m_{\widetilde{\mu}} < m_{\widetilde{H}}$ $(\sim M_1) (\sim \mu)$

- HL-LHC?
 - $> pp \rightarrow \widetilde{H}^+ \widetilde{H}^0, \ \widetilde{H}^+ \widetilde{H}^-$
 - $\widetilde{H}^0 \to \tau \widetilde{\tau}, \ \widetilde{H}^+ \to \tau \widetilde{v}_{\tau}$ because of tan β
 - \rightarrow multi-tau signature

SUSY contribution to muon g-2 : gauge basis

Summary

Endo, Hamaguchi, SI, Yoshinaga [1303.4256]