

Collider pheno of MSSM4G

Sho IWAMOTO (岩本 祥)

31 Jan. 2018 ATLAS internal meeting

Based on

Jonathan L. FENG, SI, Mohammad ABDULLAH, Benjamin LILLARD [1608.00283] (UC Irvine) (UC Irvine)

- "Minimum" set-up?
 - Dark matter : Bino-like neutralino 🏹 ->
 - > To solve the overabundance: T_4

extra vector-like lepton + slepton

→ Overabundant problem $\Omega_{\rm DM}h^2 \gg 0.12$ (theory >> observed)

Agenda

Agenda

Vector-like Lepton search : Theory

- Vector-like lepton T₄
 - > Mass hierarchy (to reduce DM) $\overrightarrow{12} \gtrsim \cancel{12} > \cancel{14}$ (> LEP bounds)
 - Production & Decay:

pp

$$\rightarrow \tau_4 \overline{\tau}_4, \quad \tau_4 \rightarrow W^- \nu_i, \ Z l_i^-, \ h l_i^-$$

"Drell-Yan" production q γ, Z \bar{q} \bar{q}

Decay through "SM-4G mixing"

 $\mathcal{L} \ni \lambda_i'' H_d L_i \overline{\tau}_4 \rightarrow \tau_4 - l_i$ mixing

~100 GeV

- If τ_4 is mixed with...
- $\succ \underset{\text{(i.e. } \lambda_1'' \gg \lambda_{2,3}'')}{\text{mainly e}: \tau_4 \to W \nu_e, \ Ze, \ he}$
- \succ mainly μ : $\tau_4 \rightarrow W \nu_\mu, \ Z \mu, \ h \mu$
- \blacktriangleright mainly τ : $\tau_4 \to W \nu_{\tau}, Z \tau, h \tau$
- ➤ more than 2 gen. with a large extent
 → combinations of the above.

(less motivated for flavor constraints)

(cf. SM Yukawa coupling $\mathcal{L}_{SM} \ni (y_e)_{ij} H L_i \overline{E}_j$)

Vector-like Lepton search : Theorists' Monte Carlo game						
■ Vecto	with <i>l_i</i> = (e r-like lep	$e \text{ or } \mu) \equiv \ell$ oton : pp	\rightarrow T ₄	τ4,	$\mathbf{T}_{4} \longrightarrow Z l_{i}^{-}, \ W^{-} \nu_{i}, \ h l_{i}^{-}$	
≻ Our	"most l	oasic" ap → HL-LH	proach: C may e	mult excluc	ti- l^{\pm} (3–5 l^{\pm}) search de $m_{\tau_4} < 350$ (425) GeV. QUE 1 QDEE 1 & τ_5 (same mass assumed)	
$\begin{cases} W\nu Zl \rightarrow 3l \ (1.3)\\ W\nu hl \rightarrow 3l \ (0.6)\\ hlZl \rightarrow 3l \ (0.8)\\ hlhl \rightarrow 3l \ (0.8)\\ 3l \ \sim 4\% \end{cases}$	$ \begin{array}{cccc} 3\%) & \left\{ \begin{array}{c} WvZl\\ hlZl\\ 3\% \end{array} \right\} & \left\{ \begin{array}{c} ZlZl\\ hlhl\\ 2lZl\\ hlhl\\ 6 \end{array} \right\} \end{array} $	$\begin{array}{l} 2 \to 4^+ \ell \ (0.4\%) \\ 2 \to 4^+ \ell \ (1.0\%) \\ 2 \to 4^+ \ell \ (0.8\%) \\ 2 \to 4^+ \ell \ (0.2\%) \\ 5 \ell \sim 2\% \end{array}$			14 TeV LHC exclusion e-mixed VLL 0^{2} 10^{2}	
	WZ(j)	$WZ(\ell)$	ZZ(j)	$ZZ(\ell)$		
$egin{array}{c} N_\ell \ N_j \ m_{jj}-m_W \ m_{jj}-m_Z \end{array}$	≥ 3 ≥ 2 $< 20 \mathrm{GeV}$	$ \geq 4 \\ < 2 \\$		≥ 5 	$ \begin{array}{c} 200 & 250 & 300 & 350 & 400 & 450 & 500 \\ \leftarrow W/Z-like jet pair VLL mass [GeV] \qquad$	
	$> 60 \mathrm{GeV}$	$> 100 \mathrm{GeV}$	≥ 1	≥ 1	←Large mET from <i>v</i> &W ←Z-like lepton pair	

- Snowmass BKG set is used.
 - MG5-Pythia-Delphes + NLO K-factor
 - di-boson + tt dominated
- Signal by FR-MG5aMC-Pythia-Delphes (LO)
- **PT cut:** $(\ell_1, \ell_2, \ell_i) > (120, 60, 20) \,\text{GeV}, \ (j) > 20 \,\text{GeV}.$
- tau-tag / b-tag not used (avoided)
- Uncertainties = stat. + 20% syst.

[marketing] [Possibly SPAM] [off-topic] SUSY EWKino search

Agenda

Vector-like Slepton search : Theory

Vector-like slepton T₄

- > Mass hierarchy (to reduce DM) $(\tau_{4} \gtrsim \tau_{4}) > \tau_{4}$ (> LEP bounds)
- Production & Decay:

"Drell-Yan" production

 γ, Z

(again) Decay through "SM-4G mixing"

* $\overline{\mathbf{1}}$ has the same mixing pattern as \mathbf{T}_4 (in QUE model).

~100 GeV

Vector-like Slepton search : Just to reinterpret slepton/stau searches

Nothing to add; thanks for your work & please continue!

Mid-point Summary

- A solution: MSSM4G = 4th-gen. vector-like (s)lepton T₄ T₄.
 - > T_4 : multi-lepton + multi-(Z/W/h) signature \rightarrow dedicated searches.
 - Tild: 2-lepton + mET signature = MSSM slepton searches.
 - ... Decays through mixing : if with (e or μ) \rightarrow sensitive @ LHC $\tau \rightarrow$ less sensitive... rather at CTA.

• Long-lived if mixing is tiny.

 \rightarrow Long-lived charged (τ_4 τ_4) & colored (VLQ) particle searches.

```
• if 4G is mixed with e or \mu:
```



```
• if 4G is mixed with e or \mu:
```


• if 4G is mixed with *e* or μ :

Model parameter space

• if 4G is mixed with e or μ :

LHC + CTA cover the whole region!

• if 4G is mixed with τ :

Mid-point Summary

- A solution: MSSM4G = 4th-gen. vector-like (s)lepton T₄ T₄
 - > T_4 : multi-lepton + multi-(Z/W/h) signature \rightarrow dedicated searches.
 - Tild: 2-lepton + mET signature
 = MSSM slepton searches.

... **Decays through mixing** : if with (e or μ) \rightarrow sensitive @ LHC $\tau \rightarrow$ less sensitive... rather at CTA.

• Long-lived if mixing is tiny.

 \rightarrow Long-lived charged ($\tau_4 \overline{\tau_0}$) & colored (VLQ) particle searches.

(but theoretical production is not the same; x1-4 depending on models.)

* "displaced jets / leptons" are also possible.

Agenda

Vector-like Quark search : if short-lived ... Done by ATLAS (top-like)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults 24 /29

Vector-like Quark search : if short-lived ... Done by ATLAS (top-like)

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults] 26 /29

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults] 27 /29

Vector-like Quark search : if short-lived ... bottom-like : two corners left

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults] 28 /29

- A solution: MSSM4G = 4th-gen. vector-like (s)lepton T₄ T₄
 - au_4 : multi-lepton + multi-(Z/W/h) signature → dedicated searches.
 - \succ $\widehat{\mathbf{m}}$: 2-lepton + mET signature = MSSM slepton searches.

... Decays through mixing : if with (e or μ) \rightarrow sensitive @ LHC

 $\tau \rightarrow$ less sensitive... tau-tagging!

• Long-lived if mixing is tiny.

 \rightarrow Long-lived charged ($\tau_4 \overline{\tau_0}$) & colored (VLQ) particle searches.

- We can further make GUT-compatible : adding VLQ. > $(T',B'), t',b' \rightarrow$ VLQ-searches done by ATLAS.
 - ✓ Most channels are covered! Thanks for your work!

 $(g - 2)_{\mu} \Rightarrow m \lesssim 1 \text{ TeV}$

✓ This is also expected from SUSY EWKino.

→ Interesting! Improvements by "boson-tagging"?

Summary

MSSM slepton searches.

Long-lived charged (τ_4) & colored (VLQ) particle searches.

VLQ-searches

More data from VLL search

Cut flow (BKG)

TABLE IV: Selection flow of the background events in the vector-like lepton search. Upper bounds on the number of events in each SR, $N_{\rm UL}$, are shown for three values of integrated luminosity, where systematic uncertainty of 20% as well as statistical uncertainty is included.

	background cross section [fb]			$N_{ m UL}$			
	di-boson	tri-boson	top	total	$300{\rm fb}^{-1}$	$1000{\rm fb}^{-1}$	$3000\mathrm{fb}^{-1}$
$N_\ell \ge 3$	222	5.1	13.4	249			
$WZ(j)^-$	0.071	0.013	0.082	0.166	25.1	70.4	200
$WZ(j)^Z$	0.643	0.071	0.183	0.898	111	359	1060
$WZ(\ell)^-$	0.014	0.025	0.017	0.056	11.9	27.4	71.1
$WZ(\ell)^Z$	< 0.001	0.005	0.003	0.008	5.1	7.9	14.5
$ZZ(j)^0$	0.194	0.016	0.058	0.268	37.2	111	321
$ZZ(j)^J$	0.064	0.007	0.022	0.093	16.4	41.8	114
$ZZ(j)^L$	0.182	0.012	0.024	0.218	31.2	91.7	263
$ZZ(j)^Z$	0.020	0.004	0.019	0.043	10.2	22.2	55.7
$ZZ(j)^{JL}$	0.060	0.005	0.009	0.075	14.2	35.3	94.3
$ZZ(j)^{JZ}$	0.008	0.001	0.008	0.017	6.7	11.9	25.6
$ZZ(j)^{LZ}$	0.020	0.004	0.019	0.043	10.2	22.2	55.9
$ZZ(j)^{JLZ}$	0.008	0.001	0.008	0.017	6.7	11.9	25.5
$ZZ(\ell)$	< 0.001	0.005	< 0.001	0.005	4.7	6.8	11.5
$ZZ(\ell)^{<2}$	< 0.001	0.003	< 0.001	0.004	4.2	5.8	9.2
$ZZ(\ell)^{<1}$	< 0.001	0.001	< 0.001	0.001	3.6	4.5	6.3

Z-flag for WZ(j): a Z-like $\ell\ell$ (SFOS, $|m_{\ell\ell} - m_Z| < 10 \,\text{GeV}$) Z-flag for $WZ(\ell)$: a Z-like $\ell\ell$ in 3⁺rd-leading leptons

- J-flag for ZZ(j): a Z-like jj (10 GeV)
- L-flag for ZZ(j): a Z-like $\ell\ell$ in 2⁺nd-leading leptons

Z-flag for ZZ(j): leading-lepton does NOT form Z-like pairs

5/29

 $ZZ(\ell)$ divided by number of jets

Cut flow (signal)

TABLE V: Selection flow of the signal events in searches for the e- or μ -mixed τ_4 in the QUE model, displayed as a signal cross section in fb. SRs marked with *, \dagger and \ddagger are the most sensitive for exclusion at $\mathcal{L} = 300$, 1000, and 3000 fb^{-1} , respectively.

m_{τ} [GeV], mixing	200, e	$200,\mu$	300, e	$300, \mu$	400, e	400, μ
total	95.7	96.0	21.2	21.2	6.76	6.74
$N_\ell \geq 3$	2.23	2.42	0.634	0.671	0.231	0.230
$WZ(j)^-$	0.018	0.022	0.020	0.024	0.011	0.012
$WZ(j)^Z$	0.049	0.063	0.034	0.036	0.014	0.014
$WZ(\ell)^Z$	0.012	0.014	0.008^{\ddagger}	0.008	0.003	0.004^{\ddagger}
$ZZ(j)^0$	0.066	0.065	0.035	0.044	0.015	0.015
$ZZ(j)^J$	0.035	0.033	0.018	0.023	0.008	0.007
$ZZ(j)^L$	0.045	0.048	0.026	0.031	0.011	0.012
$ZZ(j)^Z$	0.039^{*}	0.042^{*}	$0.025^{*\dagger}$	0.029^{\dagger}	0.010^{*}	0.012^{\dagger}
$ZZ(j)^{JL}$	0.025	0.025	0.013	0.016	0.006	0.006
$ZZ(j)^{JZ}$	0.021	0.022	0.013	0.015^{\ddagger}	0.005	0.006
$ZZ(j)^{LZ}$	0.039	0.042	0.025	0.029^{*}	0.010^{+}	0.012^{*}
$ZZ(j)^{JLZ}$	0.021	0.022	0.013	0.015	0.005	0.006
$ZZ(\ell)$	$0.015^{\dagger \ddagger}$	$0.014^{\dagger \ddagger}$	0.005	0.007	0.003^{\ddagger}	0.002
$ZZ(\ell)^{<2}$	0.010	0.009	0.003	0.004	0.002	0.001
$ZZ(\ell)^{<1}$	0.004	0.003	0.001	0.002	8×10^{-4}	6×10^{-4}

Z-flag for WZ(j): a Z-like $\ell\ell$ (SFOS, $|m_{\ell\ell} - m_Z| < 10 \,\text{GeV}$) Z-flag for $WZ(\ell)$: a Z-like $\ell\ell$ in 3⁺rd-leading leptons J-flag for ZZ(j): a Z-like jj (10 GeV) L-flag for ZZ(j): a Z-like $\ell\ell$ in 2⁺nd-leading leptons Z-flag for ZZ(j): leading-lepton does NOT form Z-like pairs $ZZ(\ell)$ divided by number of jets

TABLE II: Future prospects for searches for vector-like leptons at the 14 TeV LHC for three values of integrated luminosity. The first table is for the QUE models, and the second for the QDEE models. We consider vector-like leptons with a mass $m_{\ell_4} \geq 200$ GeV; the expressions 0^{+250} GeV etc. show that the central value of exclusion or discovery limit is below our model points and we may achieve the limit of 250 GeV with 1σ statistical fluctuation. In the dashed entries the upper limit is less than 200 GeV even with 1σ statistical fluctuation. The CL_s method is used for statistical treatment, where the statistical uncertainty and a 20% systematic uncertainty for the background contribution are taken into account, while the theoretical uncertainty on the signal cross section as well as the NLO correction are not considered. See Appendix B for further details.

QUE mode	$300{ m fb}^{-1}$		$1000~{\rm fb}^{-1}$		$3000\mathrm{fb}^{-1}$		
95% CL exclusion	e-mixed	240^{+60}	GeV	$310\substack{+50 \\ -60}$	GeV	350^{+40}_{-40}	GeV
	$\mu ext{-mixed}$	270^{+50}	GeV	$330\substack{+40 \\ -60}$	GeV	$370\substack{+40 \\ -40}$	GeV
3σ discovery	e-mixed	0^{+250}	${ m GeV}$	$250\substack{+60 \\ -40}$	GeV	$300\substack{+50 \\ -50}$	GeV
	μ -mixed	0^{+280}	${ m GeV}$	$260\substack{+70 \\ -60}$	GeV	$320\substack{+50\\-40}$	GeV
5σ discovery	e-mixed		-	0^{+210}	GeV	$220\substack{+20 \\ -20}$	GeV
	μ -mixed			0^{+210}	GeV	240^{+20}_{-20}	GeV

QDEE mod	300 f	b^{-1}	1000 f	b^{-1}	$3000\mathrm{fb}^{-1}$		
95% CL exclusion	e-mixed	350^{+40}_{-50}	GeV	390^{+40}_{-40}	GeV	430^{+40}_{-40}	GeV
	μ -mixed	360^{+40}_{-40}	GeV	400^{+40}_{-40}	GeV	440_{-40}^{+40}	GeV
3σ discovery	e-mixed	290^{+60}_{-70}	GeV	340^{+60}_{-40}	GeV	380^{+50}_{-40}	GeV
	μ -mixed	310^{+60}_{-50}	GeV	360^{+40}_{-30}	GeV	400^{+40}_{-30}	GeV
5σ discovery	e-mixed	0+200	GeV	260^{+40}_{-50}	GeV	310^{+20}_{-30}	GeV
	μ -mixed	0^{+260}	GeV	280^{+30}_{-30}	GeV	320^{+40}_{-20}	GeV

Bino overabundance

• Early Universe with $T > m_{\tilde{B}}$

• Early Universe with $T \leq m_{\tilde{B}}$

Early Universe with $T \leq m_{\tilde{B}}/20$

"observed" relic density Ωh^2 $\langle \Box$ "proper" crosssection $\langle \sigma v \rangle$ of (DM)(DM) \rightarrow SM 10^{-3} increasing 5 $< \sigma v >$ \geq n^{-10} 10^{-12} Yeq 10^{-13} 10^{-14} 10^{3} 10^{1} 10^{2} time—> m Figure from Gelmini and Gondolo, 1009.3690

"observed" relic density Ωh^2 $\langle \Box$ "proper" crosssection $\langle \sigma v \rangle$ of (DM)(DM) \rightarrow SM pure \tilde{B} -DM (i.e., LSP \tilde{W} is \tilde{B} -like) \succ $\langle \sigma v \rangle$ strongly depends on $m_{\tilde{f}}$ $hackspace{-100}{
m GeV}$ should be ~100 GeV $m_{\tilde{f}} \gg 100 \,\text{GeV} \Longrightarrow \langle \sigma v \rangle$ too small \implies "overabundant" problem

(i.e., $m_{\widetilde{B}\text{-}\mathsf{DM}} \lesssim 100 \text{ GeV}$)

Coannihilation & MSSM4G

Co-annihilation

• An old solution to increase $\langle \sigma v \rangle$: "co-annihilation"

Co-annihilation

MSSM4G outline

• A new solution to increase $\langle \sigma v \rangle$: MSSM4G

extra annihilation channel

- \rightarrow larger $\langle \sigma v \rangle$
- \rightarrow "proper" Ωh^2

if
$$\overline{\mathbb{G}} \gtrsim \widetilde{B} > \overline{\tau_4}$$

45

$$\langle \sigma v \rangle_{s\text{-wave}} = \frac{g_Y^4 (Y_{\rm L}^2 + Y_{\rm R}^2)^2}{8\pi} \frac{m_f^2}{m_{\widetilde{B}}} \frac{\sqrt{m_{\widetilde{B}}^2 - m_f^2}}{(m_{\widetilde{B}}^2 + m_{\widetilde{f}}^2 - m_f^2)^2}$$

MSSM4G outline

 $(Q_i, U_i, D_i, L_i, E_i) + (H_u, H_d)$ [MSSM] $(i = 1 \dots 3)$ $+(E_4, E_4)$ [MSSM4G]

		$\mathrm{SU}(3)_{\mathrm{color}}$	${ m SU}(2)_{ m weak}$	$\mathrm{U}(1)_Y$
\widetilde{B}_{α} . T	Q_i	3	2	1/6
	\bar{U}_i	$\overline{3}$	1	-2/3
	\bar{E}_i	1	1	1
	${ar D}_i$	$\overline{3}$	1	1/3
	L_i	1	2	-1/2
	H_{u}	1	2	1/2
R ~ T	$H_{\rm d}$	1	2	-1/2
D (4	\bar{E}_4	1	1	1
\rightarrow $/$ \sim $\sqrt{4}$	E_4	1	1	-1
$\Rightarrow (UV) & V$				

/29

$$\begin{split} W &= Y_{\mathrm{u}}H_{\mathrm{u}}Q\bar{U} + Y_{\mathrm{d}}H_{\mathrm{d}}Q\bar{D} + Y_{\mathrm{e}}H_{\mathrm{d}}L\bar{E} \\ &+ M_{E_4}E_4\bar{E}_4 + \epsilon_iH_{\mathrm{d}}L_i\bar{E}_4 \\ & \text{[vector-like mass]} \quad \text{[mixing with SM leptons]} \end{split}$$

Cosmic-ray constraint

DM indirect detection (= searches for DM annihilation)

time

DM indirect detection (= searches for DM annihilation)

$$\langle \sigma v \rangle_{s\text{-wave}} = \frac{g_Y^4 (Y_{\rm L}^2 + Y_{\rm R}^2)^2}{8\pi} \frac{m_f^2}{m_{\widetilde{B}}} \frac{\sqrt{m_{\widetilde{B}}^2 - m_f^2}}{(m_{\widetilde{B}}^2 + m_{\widetilde{f}}^2 - m_f^2)^2}$$

■ DM indirect detection (= searches for DM DM $\rightarrow \tau_4 \bar{\tau}_4$)

$$\tau_{4} \longrightarrow \begin{cases} W + \nu \\ Z + l \\ h + l \end{cases} \begin{pmatrix} \nu = \nu_{e}, \nu_{\mu}, \nu_{\tau} \\ l = e, \mu, \tau \end{cases}$$
$$W\nu : Zl : hl \sim 2 : 1 : 1$$

$$\begin{pmatrix} W \ni Y_{\rm e}H_{\rm d}L\bar{E} \\ + M_{E_4}E_4\bar{E}_4 + \epsilon_iH_{\rm d}L_i\bar{E}_4 \\ \text{[vector-like mass]} \quad \text{[mixing with SM leptons]} \end{pmatrix}$$

	Constraints from cosmic-r	ly observations
	DM indirect detect	$ \begin{array}{c} W \ni Y_{e}H_{d}L\bar{E} \\ + M_{E_{4}}E_{4}\bar{E}_{4} + \epsilon_{i}H_{d}L_{i}\bar{E}_{4} \end{array} $ $ \begin{array}{c} DM \\ M\nu : Zl : hl \sim 2 : 1 : 1 \end{array} $
_		DM DM→
	$ au_{4(5)}$ mixes with $m{e}$	W^+W^- ZZ hh $\nu\bar{\nu}$ e^+e^-
	$ au_{4(5)}$ mixes with μ	W^+W^- ZZ hh $\nu\bar{\nu}$ $\mu^+\mu^-$
	$ au_{4(5)}$ mixes with $ au$	W^+W^- ZZ hh $\nu\bar{\nu}$ $\tau^+\tau^-$

✓ τ-mixing fully covered ✓ e/µ-mixing with $m_{\tilde{B}}$ > 340–380 GeV covered

MAGIC: 158 hr of Segue 1

Fermi-LAT: 6 yr of 15 dSph (incl. Segue 1)

DM profile: NFW

Fermi-LAT dominates MAGIC in almost all E-range.

(with $m_{\tau_4} = 0.83 m_{\widetilde{B}}$)

CTA prospect : 500hr of Milky Way

DM profile: Einasto

No syst. unc. (stat only)

✓ τ-mixing fully covered ✓ e/µ-mixing with $m_{\tilde{B}}$ > 340–380 GeV covered

MAGIC: 158 hr of Segue 1

Fermi-LAT: 6 yr of 15 dSph (incl. Segue 1)

DM profile: NFW

Fermi-LAT dominates MAGIC in almost all E-range.

(with $m_{\tau_4} = 0.83 m_{\widetilde{B}}$)

CTA prospect : 500hr of Milky Way

DM profile: Einasto

No syst. unc. (stat only)

- charged particles \rightarrow diffusion
 - e : ~ 1 kpc are observable
 - P : ~ O(10) kpc ~ Milky Way
- neutral particles
 - from (neighbor of) galactic center
 - larger density, huge BKG (miss-ID & irreducible)
 - J ~ 10²² GeV²/cm⁵ (NFW; cuspy)
 - From dwarf spheroidals (mini-galaxies near MW)
 - DM rich, less baryon \rightarrow low BKG
 - J < 10^{19–20} GeV²/cm⁵ (smaller profile dependence)

$$J = \int d\Omega_{l,b} \int_0^\infty ds \,\rho(d)^2$$
$$\left(d^2 = s^2 + R^2 - 2Rs\cos b\cos l\right)$$

- < 100 GeV : satellites</p>
 - > full-sky, ~1m², 5–10% energy resolution
 - Fermi-LAT (2008) : gamma-ray to electron conversion
 - > 100 GeV : ground-based Air Cherenkov Telescopes
 - > several degree, 10^{5-6} m^{2} , ~20% energy resolution
 - > VERITAS : 4x12m telescopes, Crab $36\sigma/\sqrt{hr} = 1\%$ Crab in 35h
 - > MAGIC : 2x17m telescope, $19\sigma/\sqrt{hr} = 2.2\%$ Crab in 50h
 - ➤ HESS : 4x12m + 28m telescopes, 43σ/√hr
- > 10 TeV : ground-based Water Cherenkov
 - HAWC : 2/3-sky, effective area similar to ACT but worse resolution

Spectra from Cembranos et al. (PRD 83:083507)

Original data of Fermi-MAGIC constraints

60/29

HESS assumes Einasto profile; for NFW weaker by factor ~2.

Figure1. Left: Sensitivity for σ v from observation on the Galactic Halo with Einsasto dark matter profile and for different annihilation modes as indicated. **Right**: for cuspy (NFW, Einasto) and cored (Burkert) dark matter halo profiles. For both plots only statistical errors are taken into account. The dashed horizontal lines indicate the level of the thermal cross-section of 3×10^{-26} cm³ s⁻¹.