

Sho IWAMOTO (岩本 祥)

25 Oct. 2017 Workshop on beyond standard model and the early universe @ Tohoku University

Sho Iwamoto, Gabriel Lee, Yael Shadmi, Yaniv Weiss [1703.05748]

(and discussion with Jonathan Shlomi @ Weizmann/ATLAS)

- τ -lepton? $\longrightarrow \tau$ -tagging
- which quark? or gluon? → quark-flavor tagging

1. Quark-flavor tagging

- b-tagging
- > c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty

1. Quark-flavor tagging

- b-tagging
- > c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty

Hadronization

■ Quarks → form hadrons ("hadronize") → decay time scale: $\Lambda_{QCD}^{-1} \sim (200 \text{ MeV})^{-1} \simeq 1 \text{ fm}$ time scale: various

> u, d, s → light hadrons
$$(\pi^{\pm}, \pi^{0}, K^{\pm}, K_{S}, K_{L}, p, ...)$$

 \succ c \rightarrow charm hadrons

$$(D^{\pm}, D^{0}, \Lambda_{c}^{+}, \dots)$$

 \succ b \rightarrow bottom hadrons

$$(B^{\pm}, B^{0}, \dots)$$

flavor tagging = to differentiate these hadrons

t decays to b+W

 $(\Gamma(t \rightarrow bW) = 1.5 \,\text{GeV} > \Lambda_{\text{QCD}})$

$$(D^{\pm}, D^{0}, \Lambda_{c}^{+}, \dots)$$

0.3 0.1 0.06 [mm]

$$(B^{\pm}, B^{0}, ...)$$

0.5 0.5 [mm] x Lorentz boost ($\gamma \sim 100$)

flavor tagging = to detect decays @ 1-10 cm

Note: ATLAS installed a new layer "insertable b-layer" @ 3.3cm at the beginning of Run 2.

8

/58

1. Quark-flavor tagging

- b-tagging
- ➢ c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty

Standard technology of *b*-tagging in ATLAS experiment

- impact parameter (IP3D, IP2D)
- secondary vertex (SV)
- soft lepton detection

Jet axis IP>0 Secondary Vertex (SV) IP<0 Primary vertex (PV) Transverse Impact Parameter (a₀) Impact Parameter significance = IP/σ_{IP}

Figure from Lorenzo Feligioni's talk slides (but not sure who made this figure)

Soft lepton

Standard technology of *b*-tagging in ATLAS experiment

impact parameter (IP3D, IP2D)

tracks

- secondary vertex (SV)
- soft lepton detection

track

Standard technology of *b*-tagging in ATLAS experiment

- impact parameter (IP3D, IP2D)
- secondary vertex (SV)
- soft lepton detection
- "JetFitter" ... to reconstruct the whole decay chain

secondary vertex (SV) : ATLAS simulation for 13 TeV (ttbar)

charm-jet = between *b*-jet and light-jet

charm-jet = between *b*-jet and light-jet

- tracker-based: IP3D + RNNIP [recurrent neural network]
- vertex-based: SV, JetFitter
- lepton-based: soft muon tagger

• RNN analyzes correlation between IPs of multiple tracks. Light rejection x2, c rejection x1.2, compared to IP3D.

 $\epsilon_b = 77\% \Rightarrow (\epsilon_l, \epsilon_c) = (1\%, 16\%)$ for $t\bar{t}$ -sample

 $\epsilon_b = 77\% \Rightarrow (\epsilon_l, \epsilon_c) = (1\%, 16\%)$ for $t\bar{t}$ -sample

with significant p_{T} dependence

State-of-art: *b*-tagging in ATLAS experiment

 $\epsilon_b = 77\% \Rightarrow (\epsilon_l, \epsilon_c) = (1\%, 16\%)$ for $t\bar{t}$ -sample $(\epsilon_l, \epsilon_c) = (3\%, 30\%)$ for 4 TeV Z'-sample with significant p_{τ} dependence

/58

1. Quark-flavor tagging

- b-tagging
- c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty

Standard technology of *c*-tagging in ATLAS experiment

- impact parameter (IP3D, IP2D)
- secondary vertex (SV)
- soft lepton detection
- "JetFitter" ... to reconstruct the whole decay chain

$$D^0 \rightarrow \pi^+ \pi^- \pi^+ K^-$$
 etc...

- decay products:
 - smaller multiplicity
 - larger energy & rapidity

22 /58

 $(\epsilon_c; \epsilon_l, \epsilon_b) = (25\%; 1.4\%, 10\%)$ for $t\bar{t}$ -sample (MV) (25\%; 0.8\%, 10%) for $t\bar{t}$ -sample (DL) (25\%; 2.8\%, 20%) for 4 TeV Z'-sample (MV)

- High-Luminosity LHC (2025–): **14 TeV, 3000/fb** in 20 years
 - ➤ a new tracker for ATLAS
 - \succ more statistics \rightarrow smaller systematic uncertainty
 - > 200 collisions together with "interesting" collision (pile-up)
 - optimistic results obtained: similar tracker performance
 - R&D in machine learning?

1. Quark-flavor tagging

- b-tagging
- > c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty

Higgs

 \rightarrow to measure Br($h \rightarrow c\bar{c}$) Perez, Soreq, Stamou, Tobioka [1505.06689]

SM flavor

FCNC / t-c mixing (e.g. "flavored naturalness" Blanke, Giudice, Paradisi, Perez, Zupan [1302.7232])

SUSY

- $\succ \text{ charm squark } (pp \rightarrow \widetilde{c}\widetilde{c}^*) \underset{(cf. Mahbubani, Papucci, Perez, Ruderman, Weiler [1212.3328])}{\text{ ATLAS }}$
- > compressed top squark $(pp \rightarrow \tilde{t}\tilde{t}^*, \tilde{t} \rightarrow c + \not E_T)$ ATLAS [1407.0608], CMS [1707.07274]
- ➢ to measure squark flavor

ASSUME:

> SUSY is discovered at the HL-LHC, $pp \rightarrow 2\text{-jet} + E_{\uparrow}$.

= squark discovery ($pp \rightarrow \tilde{q}\tilde{q}^* \rightarrow qq + LSPs$)

WONDER:

- where is the gluino?
- {how many / which} squarks are found?

SUSY model discrimination with c-tagger.

 • Four QCD diagrams for $pp \rightarrow \tilde{q}\tilde{q}^*$

Four QCD diagrams for $pp \rightarrow \tilde{q}\tilde{q}^*$

- > no gluino.
- squark flavor democratic.

 $\widetilde{u} = \widetilde{c}$ if mass degenerate

with gluino.

squark flavor depends on initial parton.

 $\widetilde{u} \gg \widetilde{c}$ if mass degenerate

Four QCD diagrams for $pp \rightarrow \tilde{q}\tilde{q}^*$

- some \subset ($\widetilde{u}, \widetilde{d}, \widetilde{s}, \widetilde{c}$) are light (~TeV) and degenerate; \widetilde{B} -LSP. > others (incl. $\widetilde{b} \& \widetilde{t}, \widetilde{W}$) are heavy (not produced). ($pp \to 2$ -jet + \mathcal{E}_{\uparrow} realized)
 - ➤ three scenarios:
 - $N_{\widetilde{q}} = 2$: \widetilde{u}_{R} , \widetilde{c}_{R}
 - $N_{\tilde{q}} = 4$: \tilde{u}_{R} , \tilde{c}_{R} , \tilde{d}_{R} , \tilde{s}_{R}
 - $N_{\tilde{q}} = 8$: all the 8 squarks

✓ if mass non-degenerate?
→ distinguishable; treat separately.
✓ b̃ & t̃ are irrelevant.

(b & t from proton = negligible)

- No flavor violation. (confirmable from flavor expm?)
 - > underlying scenario: "flavored gauge mediation" ... flavor-viol. among \tilde{q}_{R} is suppressed.

Ierushalmi, SI, Lee, Nepomnyashy, Shadmi [1603.02637]

some \subset ($\widetilde{u}, \widetilde{d}, \widetilde{s}, \widetilde{c}$) are light (~TeV) and degenerate; \widetilde{B} -LSP. $(pp \rightarrow 2\text{-jet} + E_{\uparrow} \text{ realized})$ > others (incl. $\tilde{b} \& \tilde{t}, \tilde{W}$) are heavy (not produced). should be very heavy three scenarios: • $N_{\widetilde{q}} = 2$: \widetilde{u}_{R} , \widetilde{c}_{R} 11 • $N_{\tilde{q}} = 4$: \tilde{u}_{R} , \tilde{c}_{R} , \tilde{d}_{R} , \tilde{s}_{R} \tilde{W} • $N_{\tilde{a}} = 8$: all the 8 squarks $\tilde{b} \simeq \tilde{c}$ No flavor violation. (confirmable from flavor exprn?)

> underlying scenario: "flavored gauge mediation" ... flavor-viol. among $\tilde{q}_{\rm R}$ is suppressed.

Ierushalmi, SI, Lee, Nepomnyashy, Shadmi [1603.02637]

* Investigation through c-tagging would be possible if the tagger efficiency were super good... (or your idea is super good). Discrimination of the models in this scenario:

$$(N_{\widetilde{q}}, m_{\widetilde{q}}, m_{\mathrm{LSP}}, m_{\widetilde{g}})$$

- $N_{\widetilde{q}} = 2 : \widetilde{u}_{R}, \widetilde{c}_{R}$ $N_{\widetilde{q}} = 4 : \widetilde{u}_{R}, \widetilde{c}_{R}, \widetilde{d}_{R}, \widetilde{s}_{R}$ $N_{\widetilde{q}} = 8 : \text{ all the 8 squarks}$ **&** \widetilde{B} -LSP are light and accessible.

Discrimination of the models in this scenario:

$$(N_{\widetilde{q}}, m_{\widetilde{q}}, m_{\mathrm{LSP}}, m_{\widetilde{g}})$$

> number of events \rightarrow crosssection $\sigma = \sigma(m_{\tilde{q}}, m_{\tilde{g}}, N_{\tilde{q}})$

$$\succ \mathsf{mT2} \text{ analysis } m_{\mathrm{T2}} \leq m_{\mathrm{T2}}^{\mathrm{endpoint}}(m_{\widetilde{q}}, m_{\mathrm{LSP}}) \quad \left(\approx \frac{m_{\widetilde{q}}^2 - m_{\mathrm{LSP}}^2}{m_{\widetilde{q}}}\right)$$

1. Quark-flavor tagging

- b-tagging
- > c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty

Discrimination of the models in this scenario:

$$(N_{\widetilde{q}}, m_{\widetilde{q}}, m_{\mathrm{LSP}}, m_{\widetilde{g}})$$

> number of events \rightarrow crosssection $\sigma = \sigma(m_{\tilde{q}}, m_{\tilde{g}}, N_{\tilde{q}})$

$$\succ \text{ mT2 analysis } m_{\text{T2}} \leq m_{\text{T2}}^{\text{endpoint}}(m_{\tilde{q}}, m_{\text{LSP}}) \quad \left(\approx \frac{m_{\tilde{q}}^2 - m_{\text{LSP}}^2}{m_{\tilde{q}}}\right)$$
$$\succ \text{ charm fraction } F_{\text{c}} := \frac{N\left(\text{c-tagged jet}\right)}{N\left(\text{jet}\right)} \quad \text{(among hardest 2 jets)}$$

* We can also utilize "charm-jet deposition" $\{N_0^{\text{ev}}, N_1^{\text{ev}}, N_2^{\text{ev}}\}$, where N_n^{ev} is the number of events with *n c*-jets. Here we simply use Fc, which is $F_c = \frac{(N_1^{\text{ev}}/2) + N_2^{\text{ev}}}{N_0^{\text{ev}} + N_1^{\text{ev}} + N_2^{\text{ev}}}$.
Charm fraction

$$F_c := \frac{N(c\text{-tagged jet})}{N(\text{jet})}$$

(hardest 2 jets are considered; N(jet) = 2N(event))

With

(no mistag, 100% efficiency)

- ➤ an "ideal" c-tagger
- no SM background,
- decoupled gluino

 $F_c = (1/2, 1/4, 1/4)$ for $N_{\widetilde{q}} = (2, 4, 8)$ -scenarios.

• $N_{\widetilde{q}} = 2 : \widetilde{u}_{\mathrm{R}}, \widetilde{c}_{\mathrm{R}}$	→ c̃ = 1/2
• $N_{\widetilde{q}} = 4 : \widetilde{u}_{R}, \widetilde{c}_{R}, \widetilde{d}_{R}, \widetilde{s}_{R}$	1/4
• $N_{\widetilde{q}}$ = 8 : all the 8 squarks	2/8

Charm fraction

$$F_c := \frac{N(c\text{-tagged jet})}{N(\text{jet})}$$

(Note: $N(\text{jet}) = 2N_{\text{ev}}$)

- \rightarrow in reality, "smeared" by
 - > tagger performance,
 - SM background, and
 - > gluino contribution.

With

- (no mistag, 100% efficiency)
- an "ideal" c-tagger
- no SM background,
- decoupled gluino

 $F_c = (1/2, 1/4, 1/4)$ for $N_{\tilde{q}} = (2, 4, 8)$ -scenarios.

• $N_{\widetilde{q}} = 2 : \widetilde{u}_{R}, \widetilde{c}_{R} \rightarrow$	c̃ = 1/2
• $N_{\widetilde{q}}$ = 4 : \widetilde{u}_{R} , \widetilde{c}_{R} , \widetilde{d}_{R} , \widetilde{s}_{R}	1/4
• $N_{\widetilde{q}}$ = 8 : all the 8 squarks	2/8

Fc measured by ideal c-tagger

Charm fraction: Gluino mass dependence

Charm fraction

$$F_c := \frac{N(c\text{-tagged jet})}{N(\text{jet})}$$

(Note: $N(\text{jet}) = 2N_{\text{ev}}$)

With
(no mistag, 100% efficiency)
> an "ideal" c-tagger
> no SM background,
> decoupled gluino

$$F_c = (1/2, 1/4, 1/4)$$
 for
 $N_{\tilde{q}} = (2, 4, 8)$ -scenarios.

• $N_{\tilde{q}} = 4 : \tilde{u}_R, \tilde{c}_R, \tilde{d}_R, \tilde{s}_R = 1/4$
• $N_{\tilde{q}} = 8 : all the 8 squarks = 2/8$

→ in reality, "smeared" by
> tagger performance,
> SNI background, and \checkmark
> gluino contribution. \checkmark
our benchmarks:
 $(\epsilon_c; \epsilon_b, \epsilon_l) = (50\%; 20\%, 0.5\%),$
 $(30\%; 20\%, 0.5\%)$
(universal over p_T, n)

1. Quark-flavor tagging

- b-tagging
- > c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty

We want to discriminate

$$(N_{\widetilde{q}}, m_{\widetilde{q}}, m_{\mathrm{ESP}}, m_{\widetilde{g}})$$

with three "measurements":

 $N_{\text{ev}} = N_{\text{ev}}(m_{\tilde{q}}, m_{\tilde{g}}, N_{\tilde{q}})$ $m_{\text{T2}} \leq m_{\text{T2}}^{\text{endpoint}}(m_{\tilde{q}}, m_{\text{LSP}})$ $F_{c} = \frac{N_{c\text{-jets}}}{N_{\text{jets}}} = F_{c}(m_{\tilde{q}}, m_{\tilde{g}}, N_{\tilde{q}})$ $\left\{ \begin{array}{l} \checkmark \text{ larger for heavier } \tilde{g} \\ \checkmark \text{ typically SUSY > SM} \\ \geqslant \text{ smeared by tagger} \\ (\epsilon_{c}; \epsilon_{b}, \epsilon_{l}) = (50\%; 20\%, 0.5\%), \end{array} \right.$ $N_{\rm ev} = N_{\rm ev}(m_{\widetilde{q}}, m_{\widetilde{q}}, N_{\widetilde{q}})$

- - (30%; 20%, 0.5%)

Analysis based on ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100). SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0 (default-CMS but dR=0.4). SUSY: prospino NLO SM: rescaling w.r.t. ATLAS simulation

Hollow points are excluded by 13TeV 13.3/fb data. ATL-CONF-2016-078 (Meff-2j-2000) 4.5 /58

Analysis based on ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100). SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0 (default-CMS but dR=0.4). SUSY: prospino NLO SM: rescaling w.r.t. ATLAS simulation

Hollow points are excluded by 13TeV 13.3/fb data. ATL-CONF-2016-078 (Meff-2j-2000) 4).

Analysis based on ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100). SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0 (default-CMS but dR=0.4). SUSY: prospino NLO SM: rescaling w.r.t. ATLAS simulation

Hollow points are excluded by 13TeV 13.3/fb data. ATL-CONF-2016-078 (Meff-2j-2000)

/58

Result (1)

 $N_{\rm ev}$

 $N_{\rm ev}$

50 /58

Analysis based on ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100). SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0 (default-CMS but dR=0.4). SUSY: prospino NLO SM: rescaling w.r.t. ATLAS simulation

Hollow points are excluded by 13TeV 13.3/fb data. 4). ATL-CONF-2016-078 (Meff-2j-2000) **52** /58

Result (2) $(\epsilon_c, \epsilon_b, \epsilon_l) = (30\%, 20\%, 0.5\%)$ $(N_{\tilde{q}}, m_{\tilde{q}}, m_{\text{LSP}})$ (2, 1500, 1)(2, 1600, 300)450 450 (4, 1600, 300)450 (8, 1500, 1)13 (8, 1600, 300)SM × 450 7.5 13 中 $F_c \left[\%\right]$ 13 SM 10 450 13 7.5 10 7.5 6 6 5

(uncertainty: stat only, y-axis only)

Analysis based on ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100). SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0 (default-CMS but dR=0.4). SUSY: prospino NLO SM: rescaling w.r.t. ATLAS simulation

Hollow points are excluded by 13TeV 13.3/fb data. ATL-CONF-2016-078 (Meff-2j-2000) 4).

Summary

- Flavor tagging @ LHC
 - Crucial + rapidly developing (deep learning tagger @ Jul. 2017)
 - BSM application: "uncertainty"
- charm-tagging for SUSY model discrimination
 - > interesting because $\begin{cases} 1^{st} + 2^{nd} \text{ gen. are "expected" to be degenerate.} \\ c \text{ in proton } \rightarrow \text{ indirect gluino mass meas.} \end{cases}$

 $N_{\rm ev}$

1. Quark-flavor tagging

- b-tagging
- > c-tagging

2. Applications to BSM: SUSY model discrimination

- Motivation + Scope
- Charm fraction
- Results & discussion on uncertainty
- > one more subtlety in our analysis

- Fast simulation for c-tagging?
 - > impose ($\epsilon_c, \epsilon_b, \epsilon_l$) on each jet.
 - \rightarrow how to define "truth jet flavor" in simulation?
- our naive method (we modified Delphes3)
 - > a jet is "truth-level *b*-jet" if *b*-parton/hadron in jet,
 - > else: "truth-level c-jet" if c-parton/hadron in jet, else "light-jet".
 - subtlety:

 \rightarrow "truth c" [incorrect!]

- big effect to SM
- smaller for squark process
- In our simulation: another syst. unc. on "SM"
- At experiment: calibrated in "commissioning"

- > also affects squark proc.
- negligible@ current precision
- careful stud required for future (higher precision)
 - ex) flavor violation in SUSY

Summary

- Flavor tagging @ LHC
 - Crucial + rapidly developing (deep learning tagger @ Jul. 2017)
 - BSM application: "uncertainty"
- charm-tagging for SUSY model discrimination
 - > interesting because $\begin{cases} 1^{st} + 2^{nd} \text{ gen. are "expected" to be degenerate.} \\ c \text{ in proton } \rightarrow \text{ indirect gluino mass meas.} \end{cases}$

Moriond 2017 (squark)

Moriond 2017 squark searches (2j+MET)

Based on the same simplified model as ours, but

• $m_{\widetilde{g}} = \infty$,

•
$$N_{\tilde{q}} = 1$$
, 8 (CMS), 8 (ATLAS).

Moriond 2017 squark searches (2j+MET)

 $13 \,\mathrm{TeV}, 35.9 \,\mathrm{fb}^{-1}$: for $m_{\tilde{q}} = \infty$ and $m_{\text{LSP}} = 0$, • $N_{\widetilde{q}} = 1$: $m_{\widetilde{q}} < 1.05 \,\text{TeV}$ • $N_{\tilde{a}} = 8$: < 1.55 TeV • $N_{\widetilde{q}} = 2$: $\lesssim 1.2 \,\text{TeV}$ • $N_{\widetilde{q}} = 4$: $\lesssim 1.35 \,\text{TeV}$

Moriond 2017 squark searches (2j+MET)

$13 \,\mathrm{TeV}, 35.9 \,\mathrm{fb}^{-1}$:

for $m_{\widetilde{g}} = \infty$ and $m_{\text{LSP}} = 0$,

- $N_{\widetilde{q}} = 1$: $m_{\widetilde{q}} < 1.05 \,\text{TeV}$
- $N_{\tilde{q}} = 8$: < 1.55 TeV
- $N_{\widetilde{q}} = 2$: $\lesssim 1.2 \,\text{TeV}$
- $N_{\widetilde{q}} = 4$: $\lesssim 1.35 \,\mathrm{TeV}$

14 TeV, $3000 \, \text{fb}^{-1}$: $5\sigma \, \text{disc.} \, m_{\widetilde{q}} \lesssim 1.4 \, \text{TeV}$ $2\sigma \, \text{excl.} \, m_{\widetilde{q}} \lesssim 2.2 \, \text{TeV}$ $(N_{\widetilde{q}} = 8)$

but they will do better....

62/58

Details of simulation

MC method details

Signal samples are generated by MadGraph_aMC@NLO 5 [13] at LO, with the PDF set NNPDF2.3QED at LO with $\alpha_s = 0.13$ [14]. The baseline selections described in Table 3 are applied based on the missing transverse energy and jet $p_{\rm T}$. Parton showering and hadronization are performed by Pythia 6.4 [15]. Tau decays are simulated by TAUOLA [16]. For detector simulation, Delphes 3.3.0 [17] is utilized with the default detector card, where the parameter of anti- $k_{\rm T}$ algorithm [18, 19] for jet clustering is replaced by R = 0.4 to match the ATLAS studies. Pile-up effects are not considered. These signal samples are rescaled by next-toleading-order (NLO) K-factors, which are calculated by Prospino 2 [20]¹. We then apply the selection cuts for SR Meff-2j-2000 and, using the K-factors for 13 TeV collisions, and compare to the upper bound obtained by the ATLAS analysis [11] to determine whether the model point is excluded.

¹Prospino does not handle non-degenerate squarks from the first two generations. However, the NLO correction is dominated by QCD contributions (light quarks and gluons) [21]. Therefore, additional heavy squarks only contribute at next-to-next-to-leading order and the Prospino K-factors are a good approximation even in this case. As previously mentioned, we only require mild hierarchies between the masses of the lightest and other squarks, so we will ignore leading-log corrections.

		Meff-2j-2000	Meff-2j-3100	
		Signals	Z + jets	Signals
$ p_{\mathrm{T}} $ [GeV]	<	_	150	—
Leading jet $p_{\rm T}$ [GeV]	>	> 150 500		150
Subleading jet $p_{\rm T}$ [GeV]	>		60	_

Table 2: Definitions of our signal regions. SR Meff-2j-2000 is from the ATLAS analysis based on $13.3 \,\mathrm{fb^{-1}}$ data at the 13 TeV LHC [11], and Meff-2j-3100 is based on the HL-LHC study [10]. In Meff-2j-2000 (Meff-2j-3100), jets are required to satisfy $p_{\mathrm{T}} > 50 \,\mathrm{GeV}$ and $|\eta| < 2.8 \ (p_{\mathrm{T}} > 20 \,\mathrm{GeV}$ and $|\eta| < 4.5$), and $\Delta \phi$ cuts are applied to all the jets with $p_{\mathrm{T}} > 50 \,\mathrm{GeV} \ (p_{\mathrm{T}} > 40 \,\mathrm{GeV})$. H_{T} is the scalar sum of p_{T} of all the jets, and $m_{\mathrm{eff}}(\mathrm{incl.})$ is the sum of \not{E}_{T} and H_{T} . Events are vetoed if electrons and/or muons with $p_{\mathrm{T}} > 10 \,\mathrm{GeV}$ are present.

		Meff-2j-2000	Meff-2j-3100
Number of jets, electrons, muons		$\geq 2, =$	0, = 0
\mathcal{E}_{T} [GeV]	>	250	160
$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2) \; \mathrm{[GeV]}$	>	250, 250	160, 60
$ \eta(j_1,j_2) $	<	1.2	—
$\Delta \phi(j_{1,2,(3)}, ot\!$	>	0.8	0.4
$\Delta \phi(j_{i>3}, {oldsymbol {E}}_{\mathrm{T}})_{\min}$	>	0.4	0.2
${\not\! E}_{ m T}/\sqrt{H_{ m T}}~[{ m GeV}^{1/2}]$	>	20	15
$m_{ m eff}(m incl.)~[m GeV]$	>	2000	3100

Event-based approach

 F_c (truth) [%]

 $m_{\tilde{g}} \, \, [\text{TeV}]$

1.5TeV 8-squark; MC unc. only

68 /58

 $m_{\tilde{g}}$ [TeV]

1.5TeV 8-squark; MC unc. only

69 /58

 $N_{\rm ev}$

(uncertainty: stat only, y-axis only)

 $N_{\rm ev}$

(uncertainty: stat only, y-axis only)

(uncertainty: stat only, y-axis only)

 $N_{\rm ev}$

3 /58

(uncertainty: stat only, y-axis only)