

Long-lived charged particles at future *hh* and *he* colliders

Sho IWAMOTO (岩本 祥)

18 Sep. 2017 Seminar @ National Taiwan University

Based on

hh: Jonathan L. Feng, SI, Yael Shadmi, Shlomit Tarem [1505.02996] (collected in FCC-hh report [1606.00947])

he: Kechen Wang, SI, Monica D'Onofrio, Georges Azuelos [17??.????] (subgroup in BSM@ep collaboration)

- Introduction & Motivations
- How to search? & Current bounds
- 2. Future colliders (FCC-hh and FCC-he)
- 3. LLCP searches at FCC-hh
- 4. LLCP searches at FCC-he

Based on

hh: Jonathan L. Feng, SI, Yael Shadmi, Shlomit Tarem [1505.02996] (collected in FCC-hh report [1606.00947])

he: Kechen Wang, SI, Monica D'Onofrio, Georges Azuelos [17??.????]

- Introduction & Motivations
- How to search? & Current bounds
- 2. Future colliders (FCC-hh and FCC-he)
- 3. LLCP searches at FCC-hh
- 4. LLCP searches at FCC-he

Based on

hh: Jonathan L. Feng, SI, Yael Shadmi, Shlomit Tarem [1505.02996] (collected in FCC-hh report [1606.00947])

he: Kechen Wang, SI, Monica D'Onofrio, Georges Azuelos [17??.????]

Classes of Long-Lived Charged Particles (in Collider Experiments)

■ Particle property m > O(100)GeV> Heavy colored → hadronize → $\begin{cases} R-hadron / \\ stopping particles \end{cases}$

- Heavy non-colored
- \succ Light non-colored, milli-charged \rightarrow dedicated searches

Lifetime

"stable"

 $c\tau \gtrsim 1 \,\mathrm{m}$

"in-flight decay"

 $c\tau \sim 1 \text{ mm} - 1 \text{ m}$

Why should we search for LLCP? — three viewpoints

experimental

- \succ ...why not?
- relevant for detector design
- phenomenology

long lifetime \rightarrow an actor in early Universe FCC-hh will(?) cover most of the standard thermal-WIMP scenario

10

Higgs invisible bound

From a talk by Phil Harris at FCC WEEK 20

30 ab⁻¹ (100 TeV)

Neutrino Floor

DM mass [GeV]

 10^{3}

 10^{2}

BR $(H \rightarrow inv.) < 0.0001$ Taking optimistic bound

non-standard DM/cosmology with LLCP \rightarrow next slides

 $\begin{array}{c} \text{DM-nucleon cross section } [\text{cm}^2] \\ \text{DM-nucleon cross section } [\text{cm}^2] \\ \text{DM-nucleon cross section} \\ \text{I}^{-40} \\ \text{I$

 10^{-49}

10-50

theoretical ... SUSY? biased

- \succ GMSB scenario: light gravitino \rightarrow long-lived sleptons
- split-SUSY: extremely heavy squarks \rightarrow long-lived gluino

- Dark Matter (especially to ameliorate DM over-abundance)
 - co-annihilation
 - $(\widetilde{B} \widetilde{\tau}) \lesssim 700 \,\mathrm{GeV}$
 - $(\widetilde{W} \widetilde{g}) \lesssim 6-7 \text{ TeV}$
 - $(\widetilde{B} \widetilde{g})$ or $(\widetilde{B} \widetilde{t}) \leq 8$ TeV

Harigaya, Kaneta, Matsumoto [1403.0715], Ellis, Olive, Zheng [1404.5571], etc.

super-WIMP scenario $\rightarrow \tilde{l} > O(1)$ TeV

"Physics at the FCC-hh" Report [1606.00947]

- Li problem
 - > MSSM $\tilde{\tau}$ with

*m*_{*τ̃*} ∼ 400 GeV

 $\Delta(m_{\tilde{\tau}} - m_{\text{LSP-DM}}) \sim 100 \,\text{MeV}$

Feng, Rajaraman, Takayama [ph/0306024]

$$\tau(\tilde{l} \to l\tilde{G}) = 5.7 \times 10^{-7} \sec \left(\frac{m_{\tilde{l}}}{1 \text{ TeV}}\right)^{-5} \left(\frac{m_{\tilde{G}}}{1 \text{ MeV}}\right)^2$$

- **Dark Matter** (especially to ameliorate DM over-abundance)
 - ➢ co-annihilation
 - $(\widetilde{B} \widetilde{\tau}) \lesssim 700 \,\mathrm{GeV}$
 - $(\widetilde{W} \widetilde{g}) \lesssim 6-7 \text{ TeV}$
 - $(\widetilde{B} \widetilde{g})$ or $(\widetilde{B} \widetilde{t}) \lesssim 8 \text{ TeV}$

Harigaya, Kaneta, Matsumoto [<u>1403.0715</u>], Ellis, Olive, Zheng [<u>1404.5571</u>], etc.

> super-WIMP scenario $\rightarrow \tilde{l} > O(1) \text{TeV}$

- Li problem
 - \succ MSSM $\widetilde{ au}$ with

 $m_{\widetilde{\tau}} \sim 400 \, \mathrm{GeV}$

 $\Delta(m_{\widetilde{\tau}} - m_{\text{LSP-DM}}) \sim 100 \,\text{MeV}$

Sato, Shimomura, Yamanaka [1604.04769]

10 /63

$m_{ ilde W}~[{ m GeV}]~ig ~200$	250	300	350	400	450	500	550	600	700	800	900
$\delta m \; [{ m MeV}] \; \mid \; 159 \ c au \; [{ m mm}] \; \mid \; 71$	$\begin{array}{c} 160 \\ 67 \end{array}$	161 64	162 63	$\begin{array}{c} 162 \\ 62 \end{array}$	163 61	163 60	163 60	163 59	164 59	164 59	164 59
R-parity violation											
						K- D	antv	BIOIN	поп		
$m_{ ilde{H}} \; [{ m GeV}] \; ig \; 200$	250	300	350	400	450	500	550	600	700	800	900

Simple MSSM models Pure-Wino dark matter 60mm Pure-Higgsino dark matter 7mm $\widetilde{\chi}^{\pm}$ long-lived because of small δm $(\delta m > 0)$ (but DM underabundant for "observable" region) Other MSSM models \succ Gauge-Mediation (keV \tilde{G})

R-parity violation

with \tilde{l} -LSP

 $\Box > \tilde{l}$ long-lived

because of tiny couplings.

Summary of motivations

- Dark Mattter
 - > co-annihilation

- $(\widetilde{W} \widetilde{g}) \lesssim 6-7 \text{ TeV}$ • $(\widetilde{B} - \widetilde{g}) \text{ or } (\widetilde{B} - \widetilde{t}) \lesssim 8 \text{ TeV}$
- > super-WIMP scenario $\rightarrow \tilde{l} > O(1) \text{ TeV}$ \tilde{l} -LLCP
- Li problem
 - \succ MSSM $\widetilde{ au}$ with

```
m_{\widetilde{	au}} \sim 400 \, \mathrm{GeV}
```

```
\Delta(m_{\widetilde{\tau}} - m_{\text{LSP-DM}}) \sim 100 \,\text{MeV}
```

 $\tilde{\tau}$ -LLCP

- Introduction & Motivations
- How to search? & Current bounds
- 2. Future colliders (FCC-hh and FCC-he)
- 3. LLCP searches at FCC-hh
- 4. LLCP searches at FCC-he

Based on

hh: Jonathan L. Feng, SI, Yael Shadmi, Shlomit Tarem [1505.02996] (collected in FCC-hh report [1606.00947])

he: Kechen Wang, SI, Monica D'Onofrio, Georges Azuelos [17??.????]

How to search for non-colored LLCP?

■ (1) "stable" non-colored LLCPs

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements $(\beta = v/c)$

velocity

- TOF [time-of-flight] $\beta = \Delta L/\Delta t$
- dE/dx [ionization energy loss]

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements $(\beta = v/c)$

HL-LHC

CMS-PAS-EXO-14-007 (sept. 2016)

■ (2) "in-flight decay" non-colored LLCPs

Current LHC bounds

- Introduction & Motivations
- How to search? & Current bounds
- 2. Future colliders (FCC-hh and FCC-he)
- 3. LLCP searches at FCC-hh
- 4. LLCP searches at FCC-he

Based on

hh: Jonathan L. Feng, SI, Yael Shadmi, Shlomit Tarem [1505.02996] (collected in FCC-hh report [1606.00947])

he: Kechen Wang, SI, Monica D'Onofrio, Georges Azuelos [17??.????]

Magnet R&D: 20+ years

Draft Schedule Considerations

FCC Study Status and Plans Michael Benedikt 3rd FCC Week, Berlin, 29 May 2017

> From M. Benedikt's talk @ 3rd FCC Week, 29 May 2017 34 /63

25

- Mar 2015 : FCC week 2015 @ Washington D.C.
- Apr 2016 : FCC week 2016 @ Rome
- Jan 2017 : FCC physics workshop @ CERN
- May 2017 : FCC week 2017 @ Berlin
- Sep 2017 : LHeC/FCC-eh workshop @ CERN
- Jan 2018 : FCC physics workshop @ CERN
- Apr 2018 : FCC week 2018 @ Amsterdam
1. LLCPs

- Introduction & Motivations
- How to search? & Current bounds

2. Future colliders (FCC-hh and FCC-he)

3. LLCP searches at FCC-hh

4. LLCP searches at FCC-he

Based on

hh: Jonathan L. Feng, SI, Yael Shadmi, Shlomit Tarem [1505.02996] (collected in FCC-hh report [1606.00947])

he: Kechen Wang, SI, Monica D'Onofrio, Georges Azuelos [17??.????]

(subgroup in BSM@ep collaboration)

LLCPs at FCC-hh LLCPs at LHC

- \succ same production mechanism; just with a higher energy.
 - e.g., $\widetilde{I} \rightarrow$ Drell-Yan process (or from cascade decay)

- "stable" $\tilde{l} \rightarrow$ muon-like track + β measurement (heavy = slow)
 - d*E*/dx (ionization energy loss) $\Delta L/\Delta t$ (time-of-flight)

- Two extras:

 - LLCP momentum resolutions

LLCPs at FCC-hh LLCPs at LHC

- \succ same production mechanism; just with a higher energy.
 - e.g., $\widetilde{I} \rightarrow$ Drell-Yan process (or from cascade decay)

- "stable" $\tilde{l} \rightarrow$ muon-like track + β measurement (heavy = slow)
 - d*E*/dx (ionization energy loss) $\Delta L/\Delta t$ (time-of-flight)

- Two extras:
 - muon radiative energy loss
 - LLCP momentum resolutions

40 /63

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

"calorimeter": approximated by iron (Fe) with 3m thickness.

→ some of μ (P_T > 500 GeV): > 30 GeV energy deposit.

Assumptions

Detector

similar to ATLAS/CMS

- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV
 - Pile-up not considered

• \tilde{l} -selection flow

- \tilde{l} = reconstructed "muon" with
- $P_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$ (from ToF)
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

Event categorization
$$(\int L = 1 \text{ ab}^{-1})$$

 $1 \text{ TeV } 3 \text{ TeV } \text{BKG}$
 $N_{\text{LLCP}} = 0$ 483 1.34 (a lot)
 $N_{\text{LLCP}} = 1$ 378 4.46 2.78 × 10⁵
 $N_{\text{LLCP}} = 2$ 424 10.1 34.6 SR

- Event selection
 - two \tilde{l} -candidates

45 /63

LLCPs at FCC-hh LLCPs at LHC

- \succ same production mechanism; just with a higher energy.
 - e.g., $\widetilde{I} \rightarrow$ Drell-Yan process (or from cascade decay)

- "stable" $\tilde{l} \rightarrow$ muon-like track + β measurement (heavy = slow)
 - dE/dx (ionization energy loss) $\Delta L/\Delta t$ (time-of-flight)

- Two extras:
 - muon radiative energy loss
 - LLCP momentum resolutions

(Michele Selvaggi's talk in FCC physics workshop)

cf. ATLAS 7 TeV commissioning:

(ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

(Michele Selvaggi's talk in FCC physics workshop)

cf. ATLAS 7 TeV commissioning:

(ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

 $\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 100 \ {\sf TeV} \ {\sf FCC-hh} & 0.3ab^{-1} & 1ab^{-1} & 3ab^{-1} \\ \hline mass \ reach \\ ({\sf Drell-Yan} \ \widetilde{l} \ {\sf or} \ \widetilde{\tau}) & {\sf Exclusion} & 1.8-2.3 & 2.4-3.1 & 3.2-4.0 \\ \hline {\sf Discovery} & 1.6-2.2 & 2.3-3.0 & 3.1-4.0 & {\sf in} \ {\sf TeV} \end{array}$

"Muon radiative energy loss"

1. LLCPs

- Introduction & Motivations
- How to search? & Current bounds
- 2. Future colliders (FCC-hh and FCC-he)
- 3. LLCP searches at FCC-hh

4. LLCP searches at FCC-he

Based on

hh: Jonathan L. Feng, SI, Yael Shadmi, Shlomit Tarem [1505.02996] (collected in FCC-hh report [1606.00947])

he: Kechen Wang, SI, Monica D'Onofrio, Georges Azuelos [17??.????]

(subgroup in BSM@ep collaboration)

Figures from Jan Kretzschmar's and Paul Newman's talks in LHeC and FCC-eh Workshop, Sep. 2017

HERA

FCC-he targets:

FCC-he for...

- PDFs & strong coupling
- Higgs & Electroweak physics
- QCD (heavy quark PDFs)

- DIS N³LO/LHeC [Snowmass13] FCC-eh World average [2016] 0.11 0.115 0.12 Inner errors: exp. only Outer errors: exp+theo. $\alpha_s (M_z)$ Jan Kretzschmar, 11.9.2017
- > low-x physics (non-linear QCD?) : $x < 10^{-6}$

BSM ep team

★ Direct Searches

- Leptoquarks: limits, quantum # & couplings
- Contact interactions: eeqq
- Anomalous gauge couplings: vvv
- Vector boson scattering
- BSM in the top sector
- RPC SUSY: DM, sleptons
- RPV SUSY: neutralinos, squarks
- BSM Higgs: exotic (invisible) decay; H⁺, H⁺⁺
- Sterile neutrinos

[from a talk by Kechen Wang @ FCC week 2017]

Models for "in-flight decay" LLCPs @ FCC-he

Dark Matter

➢ co-annihilation

τ̃-LLCF

- $(\widetilde{B} \widetilde{\tau}) \leq 700 \,\mathrm{GeV}$ • $(\widetilde{W}, \widetilde{\alpha}) \leq 0.7 \,\mathrm{TeV}$
- $(\widetilde{W} \widetilde{g}) \lesssim 6-7 \,\mathrm{TeV}$
- $(\widetilde{B} \widetilde{g})$ or $(\widetilde{B} \widetilde{t}) \lesssim 8 \text{ TeV}$
- > super-WIMP scenario $\rightarrow \tilde{l} > O(1) \text{ TeV}$ \tilde{l} -LLCI
- Li problem
 - > MSSM $\tilde{\tau}$ with $m_{\tilde{\tau}} \sim 400 \,\text{GeV}$ $\Delta(m_{\tilde{\tau}} - m_{\text{LSP-DM}}) \sim 100 \,\text{MeV}$ $\tilde{\tau}$ -LLCP

Ī	
	Simple MSSM models
	Pure-Wino dark matter 60mm
	Pure-Higgsino dark matter 7mm
	$\widetilde{\chi}^{\pm}$ long-lived because of small δm ($\delta m > 0$)
	(but <mark>DM underabundant</mark> for "observable" region)
	Other MSSM models
	> Gauge-Mediation (keV \widetilde{G})
	R-parity violation
	with \tilde{l} -LSP
	$\Box > \tilde{l}$ long-lived any $c\tau$
	because of tiny couplings.

D /63

However, the simplest scenarios have tiny cross sections; less promising than LHC.

- Simplest models: 4-body production; $\sigma < 1 \, \text{fb} \dots (\prime \cdot \omega \cdot)$
 - Pure-Wino / Pure-Higgsino LSP

disappearing track

Slepton LSP

 u, \tilde{G}

If one more SUSY particles are as light as the LSP, the production greatly enhances.

- Introducing co-LSP allows 3-body production
 - Pure-Wino / Pure-Higgsino LSP + left-handed selectron

 $- \tilde{e}_{\mathrm{R}}$

q

q

58 /63

Nominal production cross section (without acceptances / efficiencies)

With no polarization.

- Shaded region is excluded by ATLAS (13TeV, 36/fb)
- "3-body" model assumes $\,\,m_{ ilde{e}_{
 m L}}=m_{ ilde{\chi}_{1}^{0}}^{}+$ 9 GeV

Nominal production cross section (without acceptances / efficiencies)

With no polarization.

"3-body" model assumes $m_{ ilde{\chi}^0_1} = m_{ ilde{e}} + 1\,{
m GeV}$

FCC-he in-flight decay LLCPs with reconstruction efficiency

Higgsino-only scenario: less promising because of smaller $c\tau$.

With no polarization.

Shaded region is excluded by ATLAS (13TeV, 36/fb) "3-body" process assumes $m_{\tilde{e}_{\rm L}} = m_{\tilde{\chi}_1^0} +$ 9 GeV.

- "Wino+slep" model is promising.
- reco eff. is governed by the innermost layers
 - \rightarrow closer / more-precise layers would help a lot.

/63

Summary of in-flight decay LLCP searches @ FCC-he

"Muon radiative energy loss"

Lithium problem

Lithium7-underabundant problem

Why $\beta > 0.4$? (slepton d*E*/dx)

68 /63

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

HL-LHC

Detector

- similar to ATLAS/CMS
- β-resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 14 TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- *p*_T > **100** GeV
- |η| < 2.4
- $0.3 < \hat{\beta} < 0.95$

Event selection
 two *l*-candidates

14 TeV LHC expectation

71 /63

HL-LHC

CMS-PAS-EXO-14-007 (sept. 2016)

74 /63

Why $\beta > 0.4$? (slepton d*E*/dx)

77 /63

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

Mean value of Eloss?

Averaged muon energy loss in 3m iron (internal)

dE/dx to measure β

Mass measurement = Measurement of velocity β

- TOF : time-of-flight $\beta = \Delta L / \Delta t$
- dE/dx : ionization energy loss

FCC-he ID options

Option 0 – FCC-Berlin

The position of "3rd layer" is not very different. Acceptance will be similar for both options.