

LLCP at FCC-hh & FCC-he

Sho IWAMOTO (岩本 祥) [Technion, Israel → Padova, Italia]

27 Aug. 2017 SI2017-ph @ Fuji-Yoshida

Based on

hh: Jonathan. L. Feng, S.I., Yael Shadmi, Shlomit Tarem [1505.02996]

(collected in FCC-hh report [1606.00947])

he: Kechen Wang, S.I., Monica D'Onofrio, Georges Azuelos [17??.????]

(subgroup in BSM@ep collaboration)

LLCPs : long-lived charged particles

LLCPs : long-lived charged particles

- passes the detector like a muon.
- is much heavier than a muon.

- Background = muons
- distinguishable by measuring the mass.

= measuring the velocity.

$$m = \frac{p}{\beta \gamma} = \frac{p}{\beta / \sqrt{1 - \beta^2}}$$

In-flight decay = disappearing track

- 3-4 hits in the inner-most tracker
- and then "missing"

(or a "kink" if the harder daughter **d1** is charged)

Magnet R&D: 20+ years

Draft Schedule Considerations

FCC Study Status and Plans Michael Benedikt 3rd FCC Week, Berlin, 29 May 2017

> From <u>M. Benedikt's talk</u> @ 3rd FCC Week, 29 May 2017 **10**/36

- Mar 2015 : FCC week 2015 @ Washington D.C.
- Apr 2016 : FCC week 2016 @ Rome
- Jan 2017 : FCC physics workshop @ CERN
- May 2017 : FCC week 2017 @ Berlin
- Sep 2017 : LHeC/FCC-eh workshop @ CERN
- Jan 2018 : FCC physics workshop @ CERN
- Apr 2018 : FCC week 2018 @ Amsterdam

1. FCC-hh and FCC-he

2. LLCP searches at FCC-hh

- Motivation: Super-WIMP scenario
- A new method to reduce BKG
- Expectation

3. LLCP searches at FCC-he

- Scenarios of interest: what can we do at FCC-he?
- Expectation

2. LLCP @ FCC-hh

Jonathan. L. Feng (UC Irvine), **S.I.**, Yael Shadmi, Shlomit Tarem (Technion) [<u>1505.02996</u>]

(collected in FCC-hh report [1606.00947])

■ The era of FCC-hh: standard thermal-WIMP scenarios → greatly covered.

"Physics at the FCC-hh" Report [1606.00947]

An example of "non-standard" scenario: "super-WIMP"

Feng, Rajaraman, Takayama [ph/0306024]

$$\tau(\tilde{l} \to l\tilde{G}) = 5.7 \times 10^{-7} \sec \left(\frac{m_{\tilde{l}}}{1 \text{ TeV}}\right)^{-5} \left(\frac{m_{\tilde{G}}}{1 \text{ MeV}}\right)^2$$

LLCPs at FCC-hh 2 LLCPs at LHC

- > same production mechanism; just with a higher energy.
 - e.g., $\tilde{l} \rightarrow$ Drell-Yan process (or from cascade decay)

- ➤ same detection method.
 - "stable" $\tilde{l} \rightarrow$ muon-like track but with a larger mass.
 - "in-flight decay" \rightarrow disappearing track.
- \rightarrow just an extrapolation of LHC analysis,

but a new handle to reduce "muon BKG" from SM:

"muon radiative energy loss."

19/36

[also in PDG Review "Passage of particles through matter"]

"calorimeter": approximated by iron (Fe) with 3m thickness.

→ some of μ (P_T > 500 GeV): > 30 GeV energy deposit.

Assumptions

Detector

similar to ATLAS/CMS

- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV
 - Pile-up not considered

$\blacksquare \widetilde{l} - selection flow$

- \tilde{l} = reconstructed "muon" with
- $P_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$ (from ToF)
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

Event categorization
$$(\int L = 1 \text{ ab}^{-1})$$

 $1 \text{ TeV } 3 \text{ TeV } \text{BKG}$
 $N_{\text{LLCP}} = 0$ 483 1.34 (a lot)
 $N_{\text{LLCP}} = 1$ 378 4.46 2.78 × 10⁵
 $N_{\text{LLCP}} = 2$ 424 10.1 34.6 SR

- Event selection
 - two *l*-candidates

24 /36

3. LLCP @ FCC-he

Kechen Wang (DESY), **S.I.** (Technion), Monica D'Onofrio (U. Liverpool), Georges Azuelos (U. Montreal, TRIUMF) [17??.????]

(subgroup in BSM@ep collaboration)

- FCC-he main targets:
 - PDFs
 - strong coupling
- What's more?
 - Higgs & Electroweak physics
 - > QCD (heavy quark PDFs)
 - Iow-x physics (non-linear QCD?)
- What's MORE?

Any power to New Physics? \rightarrow BSM ep team

BSM ep team

★ Direct Searches

- Leptoquarks: limits, quantum # & couplings
- Contact interactions: eeqq
- Anomalous gauge couplings: vvv
- Vector boson scattering
- BSM in the top sector
- RPC SUSY: DM, sleptons
- RPV SUSY: neutralinos, squarks
- BSM Higgs: exotic (invisible) decay; H⁺, H⁺⁺
- Sterile neutrinos

[from a talk by Kechen Wang @ FCC week 2017]

SUSY models with LLCP (stable / in-flight decay)

■ Slepton LSP decaying $\begin{cases} \bullet \text{ to ~keV gravitino} & ["stable" / in-flight decay] \\ \bullet \text{ via tiny R-parity violation} \end{cases}$ $c\tau \sim 1.8 \times 10^{-5} \text{ m} \left(\frac{m_{\tilde{l}}}{100 \text{ GeV}}\right)^{-5} \left(\frac{m_{\tilde{G}}}{1 \text{ eV}}\right)^2, \quad 0.50 \text{ m} \left(\frac{m_{\tilde{l}}}{100 \text{ GeV}}\right)^{-1} \left(\frac{\lambda_{ijk}}{10^{-8}}\right)^{-2}.$

Pure-Wino LSP / Pure-Higgsino LSP [in-flight decay]

> long-lived because of small $\delta m = m_{\widetilde{W}^{\pm}} - m_{\widetilde{W}^{0}}, \quad m_{\widetilde{H}^{\pm}} - m_{\widetilde{H}^{0}}$

$m_{ ilde W}~[{ m GeV}]~ig ~200$	250	300	350	400	450	500	550	600	700	800	900
$egin{array}{c c} \delta m & [{ m MeV}] & 159 \ c au & [{ m mm}] & 71 \end{array}$	$\frac{160}{67}$	$\begin{array}{c} 161 \\ 64 \end{array}$	162 63	$\begin{array}{c} 162 \\ 62 \end{array}$	163 61	163 60	163 60	163 59	164 59	$\begin{array}{c} 164 \\ 59 \end{array}$	$\begin{array}{c} 164 \\ 59 \end{array}$
$m_{ ilde{H}}~[{ m GeV}]~ig ~200$	250	300	350	400	450	500	550	600	700	800	900
$\delta m \; \mathrm{[MeV]} \; \left \begin{array}{c} 297 \ c au \; \mathrm{[mm]} \end{array} ight \; 11$	306 10	313 9.4	319 8.9	$\begin{array}{c} 323\\ 8.5 \end{array}$	$\frac{326}{8.2}$	329 8.0	331 7.8	333 7.7	336 7.4	$\frac{338}{7.2}$	$\begin{array}{c} 340\\ 7.1 \end{array}$

(Higgsino is more challenging because of smaller $c\tau$)

However, the simplest scenarios have tiny cross sections; less promising than LHC.

- Simplest models: 4-body production; $\sigma < 1 \, \text{fb} \dots (\hat{v} \cdot \omega \cdot \hat{v})$
 - Pure-Wino / Pure-Higgsino LSP

disappearing track

> Slepton LSP

disappearing track (or "kink") $\tilde{l}_{\rm R}$ $\tilde{l}_{\rm R}$ **R**-parity violation or gravitational interaction

/36

If one more SUSY particles are as light as the LSP, the production greatly enhances.

- Introducing co-LSP allows 3-body production
 - Pure-Wino / Pure-Higgsino LSP + left-handed selectron

32/36

Nominal production cross section (without acceptances / efficiencies)

With no polarization.

- Shaded region is excluded by ATLAS (13TeV, 36/fb)
- "3-body" model assumes $\,\,m_{ ilde{e}_{
 m L}}=m_{ ilde{\chi}_{1}^{0}}+$ 9 GeV

Nominal production cross section (without acceptances / efficiencies)

/36

With no polarization.

"3-body" model assumes $m_{ ilde{\chi}_1^0} = m_{ ilde{e}} + 1\,{
m GeV}$

Summary + Discussion: LLCPs at FCC-he

- SUSY scenarios with LLCP:
 - Pure-Wino LSP
 - Slepton LSP (with a lighter gravitino / tiny RpV)
 - > Pure-Higgsino LSP \rightarrow too small lifetime; not promising.
- Add another sparticle: 3-body production; much more events
 - Pure-Wino LSP + left-handed slepton
 - Slepton LSP + Bino (or Wino)

FCC-he will be competitive with HL-LHC.

4-body production; HL-LHC will be better.

Analysis with the proposed detector layout is ongoing.

- Any "theoretical" motivation?
- Any other ideas to improve the sensitivity?

"Muon radiative energy loss"

Velocity measurement

/36

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements $(\beta = v/c)$

velocity

- TOF [time-of-flight] $\beta = \Delta L/\Delta t$
- dE/dx [ionization energy loss]

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements $(\beta = v/c)$

Exclusion & Discovery Reach

⁴³ /36

Momentum resolution

(ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

(ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

HL-LHC

Detector

- similar to ATLAS/CMS
- β-resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 14 TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- *p*_T > **100** GeV
- |η| < 2.4
- $0.3 < \hat{\beta} < 0.95$

Event selection
 two *l*-candidates

14 TeV LHC expectation

50 /36

HL-LHC

CMS-PAS-EXO-14-007 (sept. 2016)

Why $\beta > 0.4$? (slepton d*E*/dx)

56/36

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]