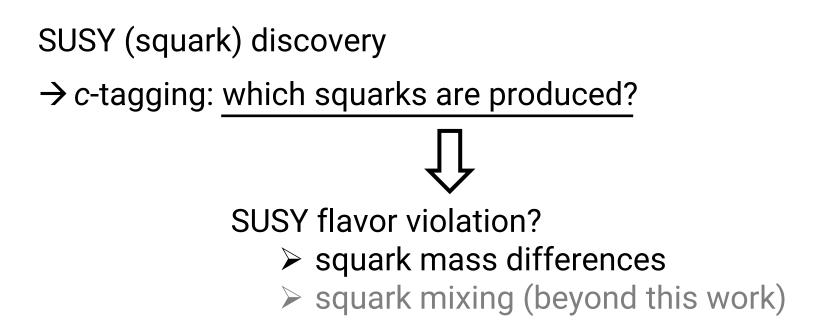
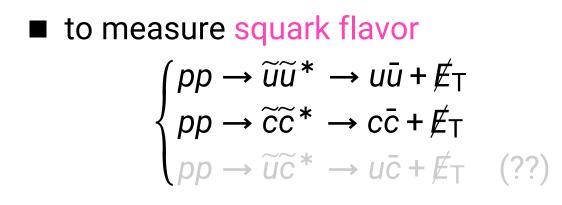


Possible use of c-tag in SUSY phenomenology


Sho IWAMOTO (岩本 祥)


3 May 2017 "EXPM-THEO cross-talk on charm-tagging" in Israel Joint Particle Physics Meeting

Sho Iwamoto, Gabriel Lee, Yael Shadmi, Yaniv Weiss [1703.05748]

Applications of c-tagging:

- to measure $Br(h \rightarrow c\bar{c})$ Perez, Soreq, Stamou, Tobioka [1505.06689]
- charm squark ($pp \rightarrow \widetilde{c}\widetilde{c}^*$) ATLAS [<u>1501.01325</u>] (cf. Mahbubani, Papucci, Perez, Ruderman, Weiler [<u>1212.3328</u>])
- compressed top squark $(pp \rightarrow \tilde{t}\tilde{t}^*, \tilde{t} \rightarrow c + \not \in_T)$ ATLAS [1407.0608], CMS [CMS-PAS-SUS-13-009]
- FCNC / t-c mixing
- (e.g. "flavored naturalness" Blanke, Giudice, Paradisi, Perez, Zupan [<u>1302.7232</u>])
- to measure squark flavor

■ We have discovered SUSY in **2j+MET channel**.

$$pp \to \tilde{q}\tilde{q}^* \to (q\tilde{\chi}_1^0)(\bar{q}\tilde{\chi}_1^0) = 2j + \mathscr{E}_{\mathrm{T}}$$

(This simplest decay chain is assumed.)

Gluino \tilde{g} is heavier; no direct production.

stop and sbottom \tilde{t}, \tilde{b} are not considered either.

$$pp \to \tilde{q}\tilde{q}^* \to q\bar{q} + \not{E}_{\mathrm{T}};$$

$$\tilde{q} = \mathbf{some of } \tilde{u}_{\mathrm{L,R}}, \tilde{d}_{\mathrm{L,R}}, \tilde{s}_{\mathrm{L,R}}, \tilde{c}_{\mathrm{L,R}}.$$

- $N_{\widetilde{q}} = 2$: \widetilde{u}_{R} , \widetilde{c}_{R}
- $N_{\tilde{q}} = 4 : \tilde{u}_{R}, \tilde{c}_{R}, \tilde{d}_{R}, \tilde{s}_{R}$
- $N_{\tilde{q}} = 8$: all the 8 squarks

 are light and degenerate. (having a same mass)

$m_{\widetilde{q}}$

Other squarks are decoupled.

* underlying scenario: "flavored gauge mediation"

 \rightarrow Gabriel Lee's talk here (WIS) on Apr 4.

Ierushalmi, SI, Lee, Nepomnyashy, Shadmi [1603.02637]

$$pp \to \widetilde{q} \, \widetilde{q}^* \to q \, \overline{q} + \mathscr{E}_{\mathrm{T}};$$

$$\widetilde{q} = \mathbf{some of } \widetilde{u}_{\mathrm{L,R}}, \widetilde{d}_{\mathrm{L,R}}, \widetilde{s}_{\mathrm{L,R}}, \widetilde{c}_{\mathrm{L,R}}.$$

What can we know from the traditional analyses?

 $\blacksquare \text{ number of events} \not \rightarrow \text{ crosssection } \sigma = \sigma(m_{\widetilde{q}}, m_{\widetilde{g}}, N_{\widetilde{q}})$

$$\blacksquare \text{ mT2 analysis } m_{\text{T2}} \leq m_{\text{T2}}^{\text{endpoint}}(m_{\widetilde{q}}, m_{\text{LSP}}) \\ \left(\approx \frac{m_{\widetilde{q}}^2 - m_{\text{LSP}}^2}{m_{\widetilde{q}}} \right)$$

$$pp \to \widetilde{q} \, \widetilde{q}^* \to q \, \overline{q} + \mathscr{E}_{\mathrm{T}};$$

$$\widetilde{q} = \mathbf{some of } \widetilde{u}_{\mathrm{L,R}}, \widetilde{d}_{\mathrm{L,R}}, \widetilde{s}_{\mathrm{L,R}}, \widetilde{c}_{\mathrm{L,R}}.$$

What can we know from the traditional analyses?

number of events ightarrow crosssection $\,\sigma=\sigma(m_{\widetilde{q}},m_{\widetilde{g}},N_{\widetilde{q}})$

$$\blacksquare \text{ mT2 analysis } m_{\text{T2}} \leq m_{\text{T2}}^{\text{endpoint}}(m_{\widetilde{q}}, m_{\text{LSP}}) \\ \left(\approx \frac{m_{\widetilde{q}}^2 - m_{\text{LSP}}^2}{m_{\widetilde{q}}} \right)$$

4 parameters v.s. 2 measurements

✓ Even if we assume the traditional SUSY ($N_{\tilde{q}} = 8$), one parameter (esp. $m_{\tilde{g}}$) remains unknown.

 \rightarrow "charm fraction" as another measurement.

1. Introduction

2. Two detours

- Gluino mass?
- LHC bounds and future

3. "Charm fraction"

1. Introduction

2. Two detours

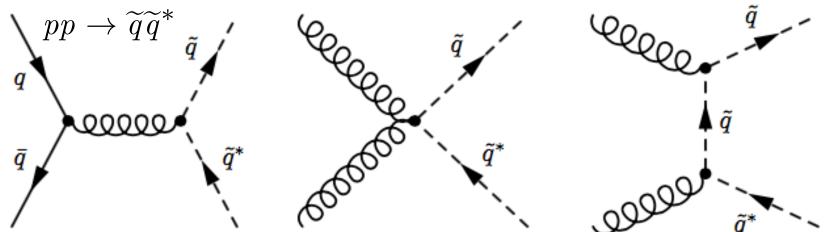
- Gluino mass?
- LHC bounds and future

3. "Charm fraction"

What can we know from the traditional analyses?

- number of events crosssection $\sigma = \sigma(m_{\widetilde{q}}, m_{\widetilde{g}}, N_{\widetilde{q}})$
- $\blacksquare \text{ mT2 analysis } m_{\text{T2}} \leq m_{\text{T2}}^{\text{endpoint}}(m_{\widetilde{q}}, m_{\text{LSP}}) \\ \left(\approx \frac{m_{\widetilde{q}}^2 m_{\text{LSP}}^2}{m_{\widetilde{q}}} \right)$

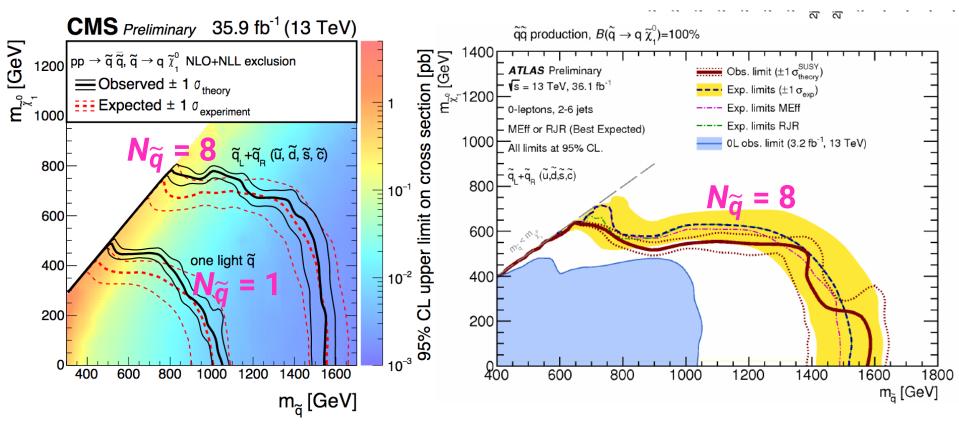
4 parameters v.s. 2 measurements


✓ Even if we assume the traditional SUSY ($N_{\tilde{q}} = 8$), one parameter (esp. $m_{\tilde{g}}$) remains unknown.

 \rightarrow "charm fraction" as another measurement.

What can we know from the traditional analyses?

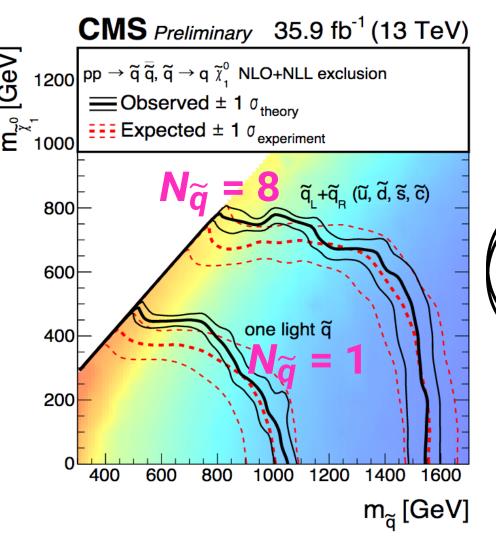
number of events — crosssection $\sigma = \sigma(m_{\widetilde{q}}, m_{\widetilde{g}}, N_{\widetilde{q}})$


processes for

smaller $m_{\widetilde{g}} \Rightarrow \text{larger } \sigma \text{ (or } N_{\text{ev}})$

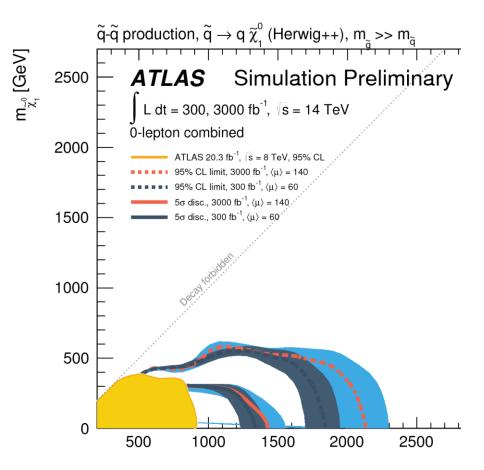
11/23

Moriond 2017 squark searches (2j+MET)



Based on the same simplified model as ours, but

• $m_{\widetilde{g}} = \infty$,


•
$$N_{\tilde{q}} = 1$$
, 8 (CMS), 8 (ATLAS).

Moriond 2017 squark searches (2j+MET)

 $13 \,\mathrm{TeV}, 35.9 \,\mathrm{fb}^{-1}$: for $m_{\tilde{q}} = \infty$ and $m_{\text{LSP}} = 0$, • $N_{\widetilde{q}} = 1$: $m_{\widetilde{q}} < 1.05 \,\text{TeV}$ • $N_{\tilde{a}} = 8$: < 1.55 TeV • $N_{\widetilde{q}} = 2$: $\lesssim 1.2 \,\text{TeV}$ • $N_{\widetilde{q}} = 4$: $\lesssim 1.35 \,\text{TeV}$

Moriond 2017 squark searches (2j+MET)

$13 \,\mathrm{TeV}, 35.9 \,\mathrm{fb}^{-1}$:

for $m_{\widetilde{g}} = \infty$ and $m_{\text{LSP}} = 0$,

- $N_{\widetilde{q}} = 1$: $m_{\widetilde{q}} < 1.05 \,\text{TeV}$
- $N_{\tilde{q}} = 8$: < 1.55 TeV
- $N_{\widetilde{q}} = 2$: $\lesssim 1.2 \,\text{TeV}$
- $N_{\widetilde{q}} = 4$: $\lesssim 1.35 \,\text{TeV}$

14 TeV, $3000 \, \text{fb}^{-1}$: $5\sigma \, \text{disc.} \, m_{\widetilde{q}} \lesssim 1.4 \, \text{TeV}$ $2\sigma \, \text{excl.} \, m_{\widetilde{q}} \lesssim 2.2 \, \text{TeV}$ $(N_{\widetilde{q}} = 8)$

but they will do better....

1. Introduction

2. Two detours

- Gluino mass?
- LHC bounds and future

3. "Charm fraction"

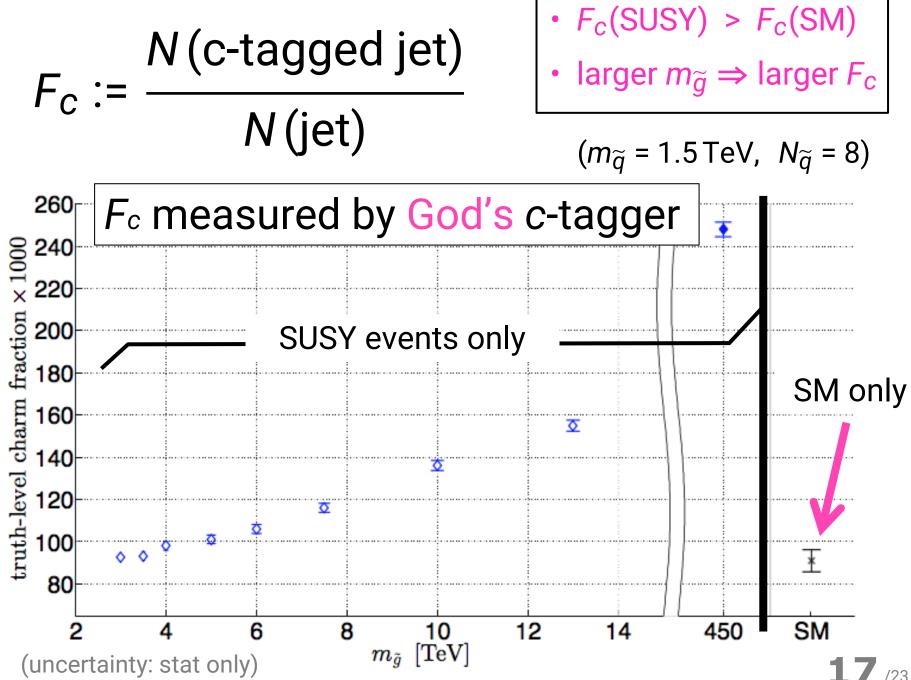
$$F_c := \frac{N(c\text{-tagged jet})}{N(\text{jet})}$$

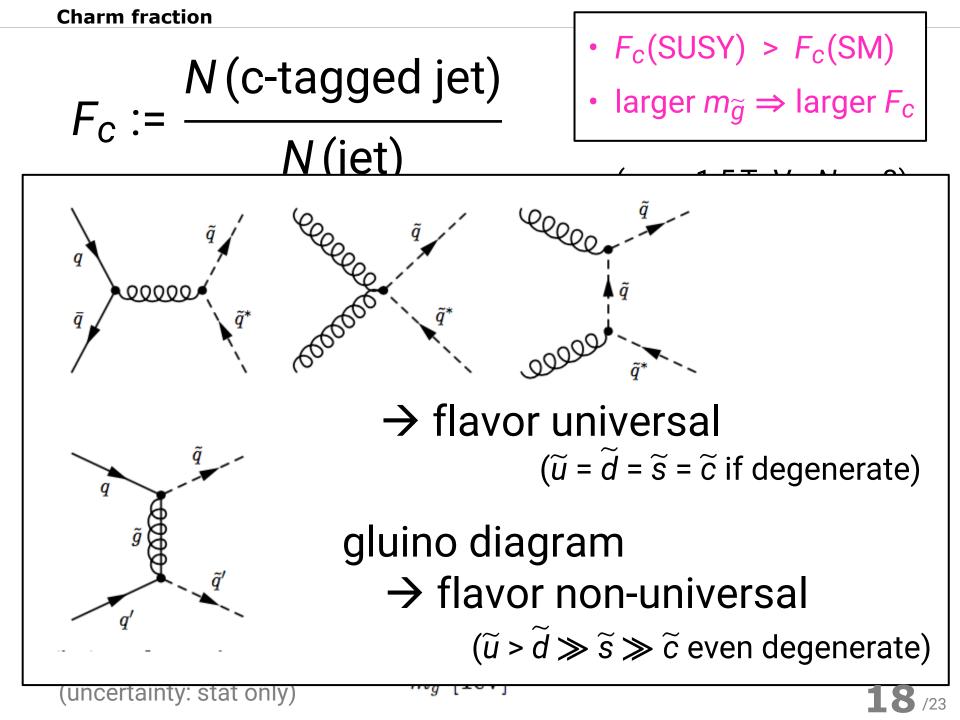
•
$$N_{\widetilde{q}} = 2 : \widetilde{u}_{R}, \widetilde{c}_{R}$$

• $N_{\widetilde{q}} = 4 : \widetilde{u}_{R}, \widetilde{c}_{R}, \widetilde{d}_{R}, \widetilde{s}_{R}$
• $N_{\widetilde{q}} = 8 : \text{ all the 8 squarks}$

(Note:
$$N(jet) = 2N_{ev}$$
)

(no mistag, 100% efficiency)


With no SM background and with the "God's" c-tagger,


$$F_c = (1/2, 1/4, 1/4)$$
 for $N_{\tilde{q}} = (2, 4, 8)$ -scenarios.

ightarrow in reality, this ratio is smeared by

- > tagger performance,
- SM background,
- > and gluino mass.

Charm fraction

Before seeing the results...

Three "measurements" for 4 params.

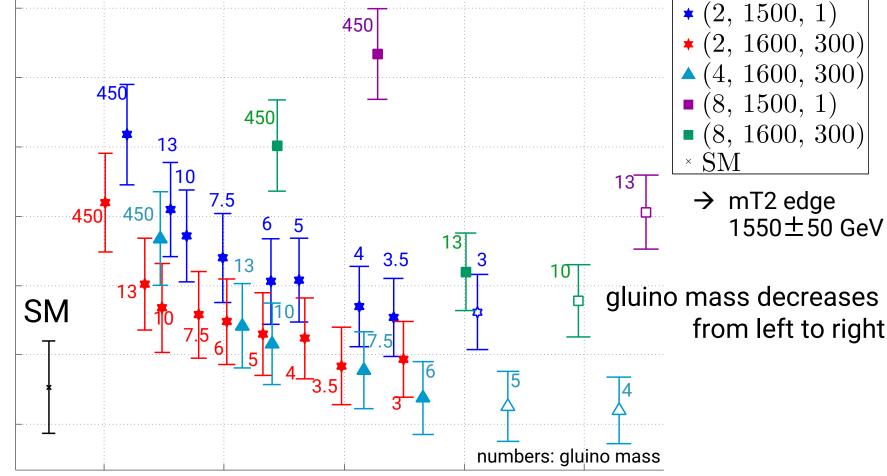
 $N_{\text{ev}} = N_{\text{ev}}(m_{\tilde{q}}, m_{\tilde{g}}, N_{\tilde{q}})$ $m_{\text{T2}} \le m_{\text{T2}}^{\text{endpoint}}(m_{\tilde{q}}, m_{\text{LSP}})$

 $F_c = F_c(m_{\widetilde{q}}, m_{\widetilde{g}}, N_{\widetilde{q}})$

Gluino mass dependencies

- $F_c(SUSY) > F_c(SM)$.
- larger $m_{\widetilde{g}} \Rightarrow$ larger F_c , smaller N_{ev} .

We are not Gods.


- tagger performance and systematic uncertainties
- SM background

• $N_{\widetilde{q}} = 2$: \widetilde{u}_{R} , \widetilde{c}_{R}

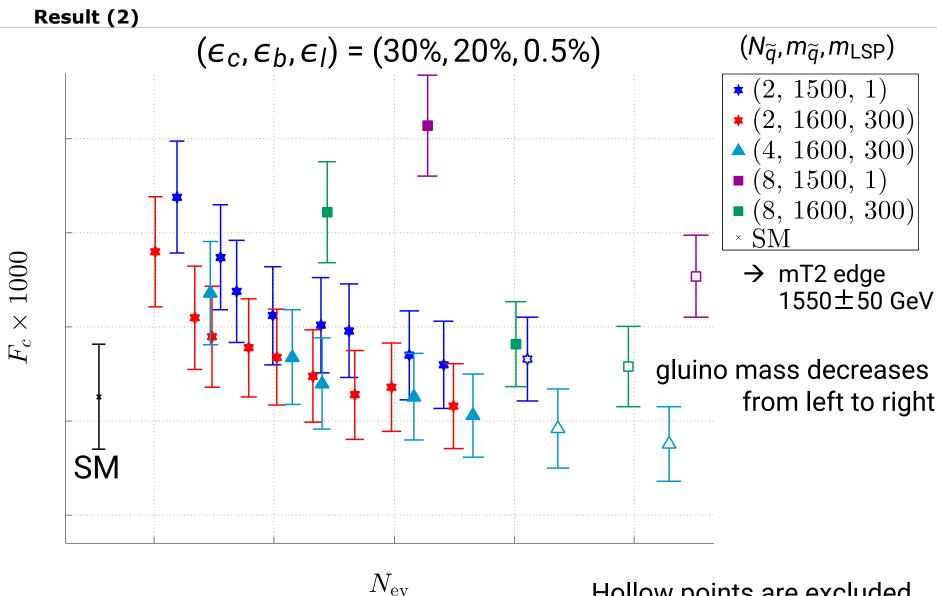
•
$$N_{\widetilde{q}} = 4$$
 : \widetilde{u}_{R} , \widetilde{c}_{R} , \widetilde{d}_{R} , \widetilde{s}_{R}

•
$$N_{\tilde{q}}$$
 = 8 : all the 8 squarks

Result (1) $(\epsilon_c, \epsilon_b, \epsilon_l) = (50\%, 20\%, 0.5\%)$

(uncertainty: stat only, y-axis only)

 $F_c imes 1000$

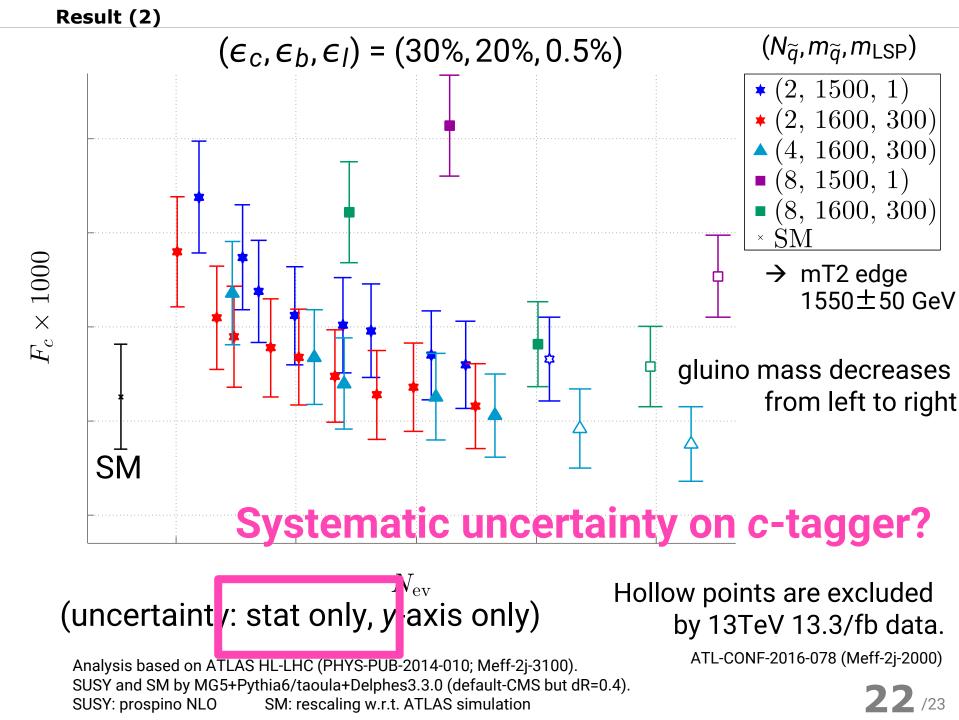

Analysis based on ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100). SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0 (default-CMS but dR=0.4). SUSY: prospino NLO SM: rescaling w.r.t. ATLAS simulation

Hollow points are excluded by 13TeV 13.3/fb data.

ATL-CONF-2016-078 (Meff-2j-2000)

 $(N_{\tilde{q}}, m_{\tilde{q}}, m_{\text{LSP}})$

20 /23


(uncertainty: stat only, y-axis only)

Analysis based on ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100). SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0 (default-CMS but dR=0.4). SUSY: prospino NLO SM: rescaling w.r.t. ATLAS simulation

Hollow points are excluded by 13TeV 13.3/fb data.

ATL-CONF-2016-078 (Meff-2j-2000)

21 /23

Summary

Simplified model for 2j+MET search (squark production):

$$(m_{\widetilde{g}}, m_{\widetilde{q}}, m_{\text{LSP}}) + N_{\widetilde{q}}$$
 v.s. m

$$N_{\text{ev}} = N_{\text{ev}}(m_{\tilde{q}}, m_{\tilde{g}}, N_{\tilde{q}})$$
$$m_{\text{T2}} \le m_{\text{T2}}^{\text{endpoint}}(m_{\tilde{q}}, m_{\text{LSP}})$$
$$F_c = F_c(m_{\tilde{q}}, m_{\tilde{g}}, N_{\tilde{q}})$$
$$\text{New!}$$

- $\blacksquare F_c(SUSY) > F_c(SM)$
- larger $m_{\tilde{g}} \Rightarrow$ smaller N_{ev} , larger F_c
 - good discrimination \leftarrow very good understanding of *c*-tagger.
 - How to measure efficiency / mistag rates? (esp. for pT > top mass)?
 - developments of "AI" tagger?

c-tagging is important & lots of potential!

Table 2: Definitions of our signal regions. SR Meff-2j-2000 is from the ATLAS analysis based on $13.3 \,\mathrm{fb^{-1}}$ data at the 13 TeV LHC [11], and Meff-2j-3100 is based on the HL-LHC study [10]. In Meff-2j-2000 (Meff-2j-3100), jets are required to satisfy $p_{\mathrm{T}} > 50 \,\mathrm{GeV}$ and $|\eta| < 2.8 \ (p_{\mathrm{T}} > 20 \,\mathrm{GeV}$ and $|\eta| < 4.5$), and $\Delta \phi$ cuts are applied to all the jets with $p_{\mathrm{T}} > 50 \,\mathrm{GeV} \ (p_{\mathrm{T}} > 40 \,\mathrm{GeV})$. H_{T} is the scalar sum of p_{T} of all the jets, and $m_{\mathrm{eff}}(\mathrm{incl.})$ is the sum of \mathcal{E}_{T} and H_{T} . Events are vetoed if electrons and/or muons with $p_{\mathrm{T}} > 10 \,\mathrm{GeV}$ are present.

		Meff-2j-2000	Meff-2j-3100
Number of jets, electrons, muons		$\geq 2, = 0, = 0$	
\mathscr{E}_{T} [GeV]	>	250	160
$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2) \; \mathrm{[GeV]}$	>	250, 250	160, 60
$ \eta(j_1,j_2) $	<	1.2	
$\Delta \phi(j_{1,2,(3)}, m{arkappa}_{\mathrm{T}})_{\mathrm{min}}$	>	0.8	0.4
$\Delta \phi(j_{i>3}, {oldsymbol {f E}}_{\mathrm{T}})_{\min}$	>	0.4	0.2
${\not\!\! E_{ m T}}/{\sqrt{H_{ m T}}}~[{ m GeV^{1/2}}]$	>	20	15
$m_{ m eff}(m incl.)~[m GeV]$	>	2000	3100