

LLCP at FCC-hh (vs = 100 TeV)

Sho IWAMOTO (岩本 祥)

18 Jan. 2017 1st FCC Physics Workshop @ CERN

Based on ATLAS Jonathan. L. Feng, S.I., Yael Shadmi, Shlomit Tarem [1505.02996] UC Irvine Technion (collected in FCC report [1606.00947])

LLCP at FCC-hh (√s = 100 TeV)

Long-lived charged particle

➤ "stable"

→ talk by José Francisco Zurita (Friday)

experimental ... Why not?

phenomenology

long lifetime

ightarrow an actor in early Universe

FCC-hh will cover most of the standard thermal-WIMP scenario

non-standard DM scenarios with LLCP

super-WIMP:

 \rightarrow next slides

co-annihilation:

 $\begin{array}{l} (\widetilde{B} - \widetilde{\tau}) & \lesssim 700 \, \mathrm{GeV} \\ (\widetilde{W} - \widetilde{g}) & \lesssim 6 - 7 \, \mathrm{TeV} \\ (\widetilde{B} - \widetilde{g}) \, \mathrm{or} \, (\widetilde{B} - \widetilde{t}) \lesssim 8 \, \mathrm{TeV} \end{array}$

Cf. Harigaya, Kaneta, Matsumoto [1403.0715], Ellis, Olive, Zheng [1404.5571], etc.

theoretical ... SUSY?

- > GMSB scenario: light gravitino \rightarrow long-lived sleptons (\tilde{l})
- \succ split-SUSY: extremely heavy squarks ightarrow long-lived gluino (\widetilde{g})

Feng, Rajaraman, Takayama [ph/0306024]

$$\tau(\tilde{l} \to l\tilde{G}) = 5.7 \times 10^{-7} \sec \left(\frac{m_{\tilde{l}}}{1 \,\mathrm{TeV}}\right)^{-5} \left(\frac{m_{\tilde{G}}}{1 \,\mathrm{MeV}}\right)^2$$

experimental ... Why not?

phenomenology

long lifetime

ightarrow an actor in early Universe

FCC-hh will cover most of the standard thermal-WIMP scenario

non-standard DM scenarios with LLCP

- ➢ super-WIMP: ∼
 - $\tilde{l} > O(1)$ TeV

co-annihilation:

 $\begin{array}{l} (\widetilde{B} - \widetilde{\tau}) & \lesssim 700 \, \mathrm{GeV} \\ (\widetilde{W} - \widetilde{g}) & \lesssim 6 - 7 \, \mathrm{TeV} \\ (\widetilde{B} - \widetilde{q}) \, \mathrm{or} \, (\widetilde{B} - \widetilde{t}) \lesssim 8 \, \mathrm{TeV} \end{array}$

Cf. Harigaya, Kaneta, Matsumoto [1403.0715], Ellis, Olive, Zheng [1404.5571], etc.

theoretical ... SUSY?

- \succ GMSB scenario: light gravitino \rightarrow long-lived sleptons
- > split-SUSY: extremely heavy squarks \rightarrow long-lived gluino

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss
- Muon momentum resolution

4. Summary

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss
- Muon momentum resolution

4. Summary

/34

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements $(\beta = v/c)$

velocity

- TOF [time-of-flight] $\beta = \Delta L/\Delta t$
- dE/dx [ionization energy loss]

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements $(\beta = \nu/c)$

HL-LHC

CMS-PAS-EXO-14-007 (sept. 2016)

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss
- Muon momentum resolution

4. Summary

our selection flow

 \tilde{l} = reconstructed "muon" with

- $P_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$ (from ToF)
- *E*_{loss} < 30 GeV

- $P_{\rm T} > 70 \,{\rm GeV}$
- |η| < 2.4
- $0.2 < \hat{\beta} < 0.95$

/34

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss for BKG rejection
- Muon momentum resolution

4. Summary

23 /34

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

"calorimeter": approximated by iron (Fe) with 3m thickness.

→ some of μ (P_T > 500 GeV): > 30 GeV energy deposit.

Assumptions

Detector

similar to ATLAS/CMS

- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV
 - Pile-up not considered

- \tilde{l} -selection flow
 - \tilde{l} = reconstructed "muon" with
 - $P_{\rm T} > 500 \,{\rm GeV}$
 - |η| < 2.4
 - $0.4 < \hat{\beta} < 0.95$ (from ToF)
 - $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

Event categorization
$$(\int L = 1 \text{ ab}^{-1})$$

 $1 \text{ TeV } 3 \text{ TeV } \text{BKG}$
 $N_{\text{LLCP}} = 0$ 483 1.34 (a lot)
 $N_{\text{LLCP}} = 1$ 378 4.46 2.78 × 10⁵
 $N_{\text{LLCP}} = 2$ 424 10.1 34.6 SR

- Event selection
 - two *l*-candidates

28 /34

(ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

(ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

1. Motivations: Why LLCP?

- **2. Searches at (HL-)LHC**
- **3. Searches at FCC-hh**
 - Muon radiative energy loss for BKG rejection
 - Our simulation

4. Summary: FCC-hh prospects

"Muon radiative energy loss"

Three topics

100 TeV FCC-hh muon momentum resolution

Exclusion & Discovery Reach

36/34

Momentum resolution

HL-LHC: our simulation

Detector

- similar to ATLAS/CMS
- β-resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 14 TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- *p*_T > **100** GeV
- |η| < 2.4
- $0.3 < \hat{\beta} < 0.95$

Event selection
 two *l*-candidates

14 TeV LHC expectation

41 /34

43/34

Why $\beta > 0.4$? (slepton d*E*/dx)

45 /34

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

dE/dx to measure β

Mass measurement = Measurement of velocity β

• TOF : time-of-flight $\beta = \Delta L / \Delta t$

