

MSSM 4G scenario

Sho IWAMOTO (岩本 祥)

25 Dec. 2016 IPS 62nd annual meeting @ Tel-Aviv University

Based on [1608.00283] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Problems of the Standard Model = Hints of "New Physics"

- Anomalies in *B*-physics
- Proton charge radius
- Beryllium anomaly
- Muon "*g*-2"
- Higgs mass ("naturalness")
- Neutrino mass
- Dark matter
- Unification of 3 forces
- Dark energy
- Gravity

New Physics Candidates

■ SUSY [supersymmetry]

Please fill this list with your models / models you like

etc...

Problems of the Standard Model = Hints of "New Physics"

- Anomalies in B-physics
- Proton charge radius
- Beryllium anomaly
- Muon "g-2"
- Higgs mass ("naturalness")
- Neutrino mass
- Dark matter
- Unification of 3 forces
- Dark energy
- Gravity

New Physics Candidates SUSY etc... Gravity

Problems of the Standard Model = Hints of "New Physics"

- Anomalies in B-physics
- Proton charge radius
 - Beryllium anomaly

Muon "g-2"

- Higgs mass ("naturalness")
- Neutrino mass
- Dark matter
 - Unification of 3 forces

Dark energy

■ MSSM ∋ Dark matter candidate

I MSSM \ni Dark matter candidate

$$\widehat{W} = \widetilde{B} \oplus \widetilde{W}^0 \oplus \widetilde{H}^0_{\mathsf{d}} \oplus \widetilde{H}^0_{\mathsf{u}}$$

• Pure- \widetilde{B} dark matter (i.e., DM is \widetilde{B} and it is purely \widetilde{B} -like)

theoretically motivated & simple

- S "thermal overabundance" problem
 - → MSSM4G model as one solution

Introduction: Overabundant problem Model: MSSM4G

Phenomenology: Gamma-ray obs. & LHC

Summary

• Early Universe with $T > m_{\tilde{B}}$

• Early Universe with $T \leq m_{\tilde{B}}$

Early Universe with $T \leq m_{\tilde{B}}/20$

Early Universe with $T \leq m_{\tilde{B}}/20$

/39

• pure- \tilde{B} DM

 $m_{\widetilde{B}} \lesssim 100 \text{ GeV: DM density} ("relic density") ~ observation$

 $m_{\widetilde{B}} \gtrsim 100 \text{ GeV}$: smaller crosssection \rightarrow larger DM density

• pure- \tilde{B} DM

 $m_{\widetilde{B}} \lesssim 100 \text{ GeV}$: DM density ("relic density") ~ observation $m_{\widetilde{B}} \gtrsim 100 \text{ GeV}$: smaller crosssection \rightarrow larger DM density

• DM is not pure \widetilde{B} ? > pure- \widetilde{W}^0 DM

 $> \widetilde{B} - \widetilde{H}$ mixing

"overabundant problem"

of Bino thermal relic DM

Other annihilation channels?

Co-annihilation [Griest, Seckel, 1991]

MSSM4G [Abdullah, Feng, 2015]

Introduction: Overabundant problem Model: MSSM4G

Phenomenology: Gamma-ray obs. & LHC

Summary

Image by MissBJ [CC BY 3.0], via Wikimedia Commons

• A new solution to \widetilde{B} -overabundant problem: MSSM4G

extra annihilation channel

22/39

$$\left\langle \sigma v \right\rangle = \frac{g_Y^4 Y_{\rm L}^2 Y_{\rm R}^2}{2\pi} \frac{m_f^2}{m_{\widetilde{B}}} \frac{\sqrt{m_{\widetilde{B}}^2 - m_f^2}}{\left(m_{\widetilde{B}}^2 + m_{\widetilde{f}}^2 - m_f^2\right)^2}$$

MSSM4G : Two models

- MSSM + $E\bar{E} \rightarrow$ breaks coupling unification
- QUE model : MSSM + $Q\bar{Q}U\bar{U}E\bar{E}$
 - 🕗 gauge coupling unification
 - 💋 SU(5) GUT
 - > extra $H_u Q_4 \overline{U}_4$ interaction $\rightarrow m_h$
- QDEE model : MSSM + QQDDEEEE
 - gauge coupling unification
 - 🔀 SU(5) GUT
 - > extra $H_dQ_4\bar{D}_4$ coupling $\rightarrow m_h$ slightly \checkmark

Introduction: Overabundant problem Model: MSSM4G

Phenomenology: Gamma-ray obs. & LHC

Summary

DM indirect detection by Gamma-ray observation

DM indirect detection by Gamma-ray observation

Introduction: Overabundant problem Model: MSSM4G

Phenomenology: Gamma-ray obs. & LHC

Summary

 \rightarrow searches for 2-lepton + Missing E_T

(same as MSSM slepton searches)

→ searches for multi-lepton final state

■ if 4G lepton decays to electron or muon

if 4G lepton decays to tau-lepton

LHC insensitive ... $(\cdot \omega \cdot)$

32 /39

■ if 4G lepton decays to electron or muon

if 4G lepton decays to tau-lepton

LHC insensitive ... ($(\cdot \cdot \omega \cdot)$)

33 /39

Introduction: Overabundant problem Model: MSSM4G

Phenomenology: Gamma-ray obs. & LHC

Summary

■ Pure- \tilde{B} DM with $m_{\tilde{B}} \gtrsim 100$ GeV \rightarrow DM overabundance

MSSM4G is a solution to this problem.

■ MSSM4G will be ALL explored soon.

 \mathbf{z}_4

- Pure- \tilde{B} DM with $m_{\tilde{B}} \gtrsim 100$ GeV \rightarrow DM overabundance
- MSSM4G: provides additional DM-annihilation channel.

→ correct relic density even w. $m_{\tilde{B}} \gtrsim 100$ GeV.^B

■ MSSM4G will be ALL explored soon.

 \mathbf{z}_4

τ4

- Pure- \tilde{B} DM with $m_{\tilde{B}} \gtrsim 100$ GeV \rightarrow DM overabundance
- MSSM4G: provides additional DM-annihilation channel.
 - → correct relic density even w. $m_{\tilde{B}} \gtrsim 100$ GeV.^B
- MSSM4G will be covered by CTA & HL-LHC:

 \mathbf{z}_4

τ4

Summary

- Pure- \tilde{B} DM with $m_{\tilde{B}} \gtrsim 100$ GeV \rightarrow DM overabundance
- MSSM4G: provides additional **DM-annihilation** channel.

 T_4

- → correct relic density even w. $m_{\tilde{B}} \gtrsim 100$ GeV.
- MSSM4G will be covered by CTA & HL-LHC:

