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PREFACE

| majored the particle physics, especially its phenomenological aspect. In my
two years, | have learned the Standard Model, the supersymmetry and the
minimal supersymmetric standard model, and the foundation of cosmology,
collider physics, and grand unified theories, and finally studied cosmological
constraints on R-parity violating parameters to write and submit a paper []
with ;=% & (Motoi ENDO) and /&0 %=— (Koichi HAMAGUCHI).

This thesis centers what | did (with the collaborators) in the paper, with some
reviews of the R-parity. Also | present a brief summary of what | learned in the
Appendices.
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ABSTRACT

We investigate in detail the R-parity violating SUSY, especially the con-
straints on its parameters. The constraints are mainly obtained from col-
lider experiments, and they are of order 107>-10~*. However, we found
that, if lepton flavor violating processes are strong enough to equilibrate
the lepton flavor asymmetry in the early universe, which is naturally ex-
pected in various models, the present baryon—antibaryon asymmetry

brings us much more stringent constraints of order 107—107.
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Chapter 1

Prelude

€SUSY and R-parity

We have the Standard Model, which describes almost all physics below the energy scale
100GeV. Although it is still under verification, especially the existence of the Higgs boson,
the experiments held in the Large Hadron Collider (LHC) will work out the answer soon,
which will be a declaration of the triumph of our philosophy.

However, the Standard Model contains one “unnaturalness,” the hierarchy problem.
The Higgs boson, a sole weird particle in the Standard Model, receives a large mass

2
correction Am? ~ (1019GeV) , and forces us to realize a miraculous cancellation

mﬁare - Amz = mlz)hysical’ (11)
that is,
0(10%GeV?) - 0(10¥GeV?) = O (10*GeV?). (1.2)

This problem originates from the separation between the electroweak scale 100GeV and
the gravitational scale 10GeV, and thus it is called the hierarchy problem.

The most famous answer to this unnaturalness is the supersymmetry (SUSY) [2], a
symmetry which transforms boson to fermion, or vice versa. In a supersymmetric theory,
all particles accompany their supersymmetric partners, or “superpartners,” and therefore
if we extend the Standard Model with the SUSY, we have bosonic quarks, bosonic leptons,
and fermionic gauge bosons, as the partners of the quarks, the leptons, and the gauge

Zawis

bosons. They are called “squarks,” “sleptons,” and “gauginos,” respectively. They also
contribute to the mass correction, and under the SUSY, the correction is calculated to
be zero.”! Also, the SUSY is significant for grand unification theories (GUTs) and string

theories.

*1 For a more detailed discussion, See Ref. [B].
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However, very sad to say, the minimal supersymmetric standard model (MSSM) [H,
B, B], which is the minimal supersymmetric extension of the Standard Model, has a big
problem, not unnaturalness. Under the MSSM, the lifetime of proton is naively estimated
to be less than one second. If we would like to obtain the current experimental bounds
10%yr [@], we must yet introduce an unnaturalness of order 10%.

Why does this proton decay problem emerge? — In the Standard Model, the baryon
number B and the lepton number L are accidentally conserved by the gauge symmetry.
For the rigidity of the gauge symmetry and the skimpiness of the field content, we could
not construct B- or L-violating operators. However, in the MSSM, the field content is
doubly extended. Now B- and L-violating operators can be constructed, which invoke
proton decay:.

To solve this proton decay problem, usually we impose the R-parity [B], a Z, symmetry
which forbids B- and L-violating operators again, on the MSSM. This seems a nice way,
because we have never observed B- or L-violating events. Also, this “MSSM with R-
parity” provides a very nice explanation of the dark matter problem. We know that
our familiar matters, e.g., electron, proton, and neutron, account for about 4% of the
substance of this universe. [B, B] We consider that 21% of the substance is some other
matter, called “dark matter,” and the rest 75% is not even matter, which we call “dark
energy.” As we will discuss in this thesis (Chap. B), if the R-parity is conserved, the
lightest supersymmetric particle (LSP) becomes stable in the MSSM scheme. Therefore,
if the LSP has appropriate mass, it can be a good candidate of the dark matter.

As we have seen, the R-parity is a very attractive choice. It explains even the dark
matter problem, as well as the proton decay problem. However, it is installed arbitrarily.
We just imposed by hand. Therefore, fairly speaking, it is also unnatural. We should, to
explore this mysterious universe, consider other choices than the R-parity, as well as the
R-parity case.

Actually, we have other ways but the R-parity to circumvent the proton decay problem.
If we impose the conservation of either B or L, proton decay does not occur. We call these
models “SUSY without R-parity,” or “R-parity violating SUSY,” and in this thesis, we will
explore the “SUSY without R-parity.”

€ Why not R-parity?
But why do we abandon the very beautiful R-parity?

— Now we have just celebrated the rebirth of the LHC. In the LHC experiments, the
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discovery of the SUSY as well as the Higgs boson is expected. However, the studies on
the detection of the SUSY are, almost all of them, with the assumption of the R-parity
conservation.

If the R-parity conservation is realized in nature, we will discover the SUSY at the LHC
soon, which will solve even the dark matter problem, and then we will come to develop
deeper understanding of the universe. However, if not? Then, we might be unable to
know the existence of the SUSY even if the SUSY is realized in nature. Also we will have
no answer to the dark matter problem, and even be unable to reject the scenario that the
dark matter is the LSP.

In the last decade, 2000’s, We had long waited for the LHC. Now, at last, the time has
come. We should exhaust the experimental results obtained at the LHC, and to this end,
it is important to be free from any obsessions, as well as be stick to the beautiful, attractive

scenario.

& Outline of this thesis

This thesis focuses on the R-parity violating SUSY, and discuss its phenomenological
aspects.

The author studied and wrote a paper [[], with two collaborators iz & (Motoi ENDO)
and %I s — (Koichi HAMAGUCHI), about cosmological constraints on the magnitude
of the R-parity violation. We will discuss what we presented in the paper in Chapter 4,
with much verbosity.

As preparatory of the discussion, in Chapter 2, we review the R-parity violating SUSY,
and some constraints obtained mainly from collider experiments. Also, in Chapter 3, we
review the property of the universe before the electroweak phase transition (temperature
T > 100GeV), which we considered in the paper. The last part, Chapter 5, is devoted to
conclusion and discussion.

Also we present several appendices. Appendix A is a brief review of the Standard
Model. In Appendix B, the SUSY is reviewed, and we discuss the higher dimensional
proton decay operators and the R-parity. We will see that the R-parity is not sufficient to
prohibit the proton decay. Appendix C is a brief review of the cosmology, mainly on the

Hubble expansion.






Chapter 2
SUSY and R-Parity

To begin with, we discuss the R-parity, its effect to the minimal supersymmetric standard

model (MSSM), and the restrictions on the R-parity violating parameters.

Section 2.1 Review: the R-Parity
2.1.1 PROTON DECAY PROBLEM
The superpotential of the MSSM is constructed as*!

W = uH.Hqg + vuiiHo QiU + v4iiHaQiD; + YeijH4LiE;
1 = ’ = 1 17T (21)
+ x;HL; + E/\ijkLiLjEk + A ijkLinDk + EA iijiDjDk.
Here, the UDD term violates the baryon number B, and three operators LLE, LQD, and
H,L violate the lepton number L. These terms cause a disastrous event, the decay of
proton. The Feynman diagram of the decay is, for example, described as Fig. E71I. Here,
U1D1D, (AB = £1) and L1Q1D; (AL = £1) interactions invoke p — 7e* decay. The decay

rate I is approximately

2

| S B A W ngmt(’n _ MM 1Tev\* "5
el T T 5 910 0yr \ g, ) 22)

SR
while the lifetime of proton according to this decay mode is measured as longer than

1.6 X10%yr (90% confidence level) [2]. Therefore those parameters are restricted as

<1077 (ﬂ)2 2.3)
S 1Tev) ’

’ ’”
A112A112

which is unnatural. This is the proton decay problem.

1 Here we use the convention Ajjx = —Ajix and /\lf]fk = —/\;]2].. For more detail information, see App. B.
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Fig. 2.1 Feynman diagram of the proton decay (with no suppression). The time goes
from left to right, and the arrows denote the directions of the left chirality. For example,
initial # and d must be right-handed, and the intermediate ’sz is left-handed, since it is
an antiparticle of a right-handed particle.

Thus, in order to solve this problem, we usually install the conservation of the R-parity

[B] into the MSSM. The R-parity is a discrete Z, symmetry defined as
PR = (_1)BB—L+ZS/ (24)

where B, L and s are the baryon number, the lepton number and the spin of the particle,
respectively.

The exact conservation of the R-parity restricts the superpotential as
W = Wgpc := [JHqu + yui]'HuQin + ]/dininDj + yei]'HdLiEj- (2.5)

Note that the R-parity makes B and L again conserved in the MSSM, as they were in the
Standard Model. Under this superpotential, the proton decay could not occur, and again

the proton would be a stable particle.

Now we seem to have circumvented the proton decay problem. However, to be honest
with nature, we have to consider higher-dimensional operators which can invoke the
proton decay:.

The discussion about the higher-dimensional proton decay is presented in App. B2ZZT],
and there we will conclude that we should use another symmetry, the proton hexality [[],
than the R-parity. Though, the phenomenology under the proton hexality is almost the
same as that under the R-parity, and in almost all cases, we need not look after the
difference between the R-parity and the proton hexality.

Therefore, here we do not pay attention to the higher-dimensional proton decay, and

go forward with the R-parity.
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2.1.2 R-PARITY AND DARK MATTER

Now we have circumvented the proton decay problem for the sake of the R-parity.
Actually, this R-parity conservation brings us another attractive feature. Thatis, a solution
of the dark matter problem.

The definition of the R-parity is equivalent to the following one:

{PR = +1 for Standard Model particles, 2.6)

Pr = -1 for superpartners.

Consider the lightest particle among the superpartners (R-odd particles). This particle,
which is called the lightest supersymmetric particle (LSP), cannot decay under the R-
parity conservation, because lighter particles than the LSP are all even in the R-parity.
Therefore, if the R-parity is conserved, the LSP is always stable, and would be an attractive

candidate for the dark matter.

Actually, the R-parity conserving scenario is respected for this feature, that is, for
one symmetry solves two problems. As we will see in the next section, resultingly we
must impose a constraint to forbid proton decay even if we are away from the R-parity
conserving models. When we come to impose a symmetry, we surely want to use the one

which solves two problem. Therefore, we usually use the R-parity.

2.1.3 OTHER CHOICES THAN R-PARITY

Here we shall mention an interesting properties of the proton decay. What we would like
to say is, the proton decay does not occur if at least one of the following two properties

is satisfied:

1. The baryon parity (—1)% is conserved.
2. The lepton parity (—1)* is conserved and the LSP is heavier than proton (misp >

mproton ) .

The first condition is obvious. If proton would decay, the final state must be B = 0,
because proton is the lightest baryon, and thus the baryon parity must change. Therefore,
if the baryon parity is conserved, proton would not decay. Note that the conservation of

the baryon number is a sufficient condition for this case.
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On the other hand, the second one is a bit complicated and needs some explanation.
Assume that the lepton parity is conserved. As we have just seen, the decay process
must be AB = -1, and thus (-1)*¥"L = —1, by the assumption. This means the R-parity
of the final state is odd, so we need one superparticle in the final state. Therefore, if the
lepton parity is conserved, the LSP must be lighter than proton for the proton decay to
be invoked.

The conservation of the R-parity saturates the first condition as long as we consider only

4-dimensional operators of the MSSM, and therefore the proton decay is circumvented.

* * *

Now we can see that we have actually three choices to forbid the proton decay.
(i) Forbid both B- and L-violation: The first way is to impose the R-parity, or other

symmetries, so that the superpotential is restricted as
W = Wgpc := [JHqu + yui]'HuQin + ydininDj + ]/ei]'HdLiEj- (2.7)

In this case, B and L are conserved as the Standard Model. Moreover, with great pleasure,
the LSP becomes stable, and can be a candidate for the dark matter.

Note that we consider only the MSSM scheme. If we introduced other particles to
extend the MSSM, the R-parity might not forbid B- or L-violation. (Imagine a superfield
which carries 3B =L =1.)

(if) Forbid B-violation: The second way is to forbid B-violating interactions and restrict

the superpotential as
1 o _
W = Wgpce + x;HyL; + EAijkLiL]'Ek + A ijkLinDk (28)

with imposing some symmetry. In this case the LSP is not responsible for the dark matter.
(i) Forbid L-violation: The last way is to forbid L-violating interactions with some sym-

metry. The superpotential would be
1 17 T Y T
W = Wgpc + EA iixU;D;Dy, 2.9)

and in this case the LSP must be heavier than proton for fear proton might decay. Also
the LSP is not a dark matter candidate.
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Now we consider only the MSSM, and its 4-dimensional operators. In this
scheme, the conservation of the lepton parity and the lepton number are equiva-
lent.

Alsonote that we distinguish these three patterns by the form of the superpoten-
tial, not the symmetry imposed on, because we are interested in phenomenology.

The discussion on what happens when we consider higher dimensional op-
erators, and that on the symmetries which we should impose in each case, are
presented in App. B3.

The first choice is widely discussed. In this thesis, we focus on the second and the third

cases, the R-parity violating MSSM.

Section 2.2 Constraints on the Couplings

Now we have circumvented the proton decay problem. However, the R-parity violating
couplings
Ki, Ak /\lfjk; A;;k (2.10)
have other constraints, mainly from collider experiments.
We can eliminate the couplings «; by redefining the fields Hy and L;. Thus we use the

following form as the superpotential:
1 _ , i,
W = Wgpc + E/\ijkLiLjEk + A ijkLinDk (2.11)
for the L-violating scenario, and

1 17 T T T
W = Wgpc + EA ijkuiu]‘Dk (2.12)

for the B-violating scenario, and discuss the constraints and the bounds on the R-parity
violation parameters.
We have 9 + 27 L-violating parameters and 9 B-violating parameters. For simplicity,

we will focus only on the absolute value, that is, we will ignore complex phases.

#Single-coupling bounds

We saw in the last section that the product of A”” and A’ is restricted as

<1077 (ﬂ)2 (2.13)
S TeV

This is surely a constraint on the R-parity violating couplings, especially a constraint on

’ "
A112A112

a product of the couplings.



10 Magisterial Thesis / Sho Iwamoto

In the context of the constraints, however, usually “single-coupling bounds,” which are
the bounds on the indivisual R-parity violating couplings when only the particular cou-
pling is non-zero, are discussed. This is mostly for simplicity, but not very unreasonable,
because the bounds of products are generally much more severe than the single-coupling
bounds, as we saw for the proton decay case.

In this thesis, we mainly focus on the single-coupling bounds.

* * *

However, we should be careful when we discuss single-coupling bounds, because
several constraints are those on the difference of the R-parity violating couplings. We will
see examples of such situations soon in the following discussion.

€ Preparation

To simplify expressions, we follow Refs. [T, ] and define

2

2 ’

1 |/\ijk| 1 g
rin(X) := , 7. (X) = , (2.14)

"0 = G W= NG

and in addition,
R (A7)
1 K

rijk;lmn(X) = ST (215)

42Gy  my

where my is the mass of a particle X and Gg is the Fermi constant, 1.116 x107°GeV 2.

2.2.1  u AND T DECAY: FOR A; ETC.

First we consider the leptonic decay of u and 7, as discussed in Ref. [[F], and previously
in Refs. [T, [4] (charged current universality). This discussion yields the bounds on A;j.

Here we consider the decay rate of the events
e — ViejV;/ (2.16)
and corresponding two values:

_ Tt > veev)) I(t = vepv))
T

(2.17)

T F(T—>VT[JVL)’ - F(y—)vpev;r)'

In the Standard Model, or the R-parity conserving MSSM (R,-MSSM), these processes

are invoked mainly by the gauge interaction mediated by W-boson. However, if we have
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Aok . A3k .
HL > = - Ve L > = -t Ve
| |
ERk eL, sz eL
| |
_Alzk M3k
v v
u T
(a) (b)
A3k
L > o - Vi Ho > > Vi
|
A eRk HL W eL
|
_/\23k
Vq ot
(c) (Rp-MSSM) e

Fig. 2.2 Possible R-parity violating contributions to (a) u — eviv,, (b) T = eviv,, (c)
T [uv:lvT, and corresponding R,-MSSM process.

LLE term, it also contributes to the process. See Fig. I for the Feymnan diagrams of the
R,-MSSM process and LLE-induced case.
Therefore, the values R; and Ry, are shifted by the R-parity violating processes. The

shifts are calculated as

(RR)T =1+2 Z [rl3k@Rk) - rZSk(Z;Rk)] p (218)
7)SM p

R.
(RTH;;M -2 Zk“ [723(ere) = r12x(eri)], (2.19)

which means that the difference between the experimental result and the Standard Model
expected values of R; and R, give us constraints on the R-parity violating couplings 7;,
that is, Aijk-

The calculated results under the Standard Model v.s. the experimental results are

R, 1.028(4) Ry 1.312(6) x10°
(R)sm  1.028 (Rep)sm 1.309 x106

(2.20)

where the Standard Model precision values (denominators) are obtained from Ref. [[2],

and the experimental results (numerators) are from Ref. [A]. Therefore we obtain the
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following 20 = 95% bounds:

2
100GeV
—0.0512<Z[IA13k|2—|A23k|2]( - ) <0051 (R (2.21)
k ERk
2
100GeV
—0.048> 2 2 0.0622. R, 2.22
0.048 <Zk:[ngk| wm]( e )< (Re) (2.22)

If we see these bounds from the viewpoint of single-coupling bounds, they are

Algk < 0.051, Azgk < 0.051, A12k < 0.048, (223)

for m = 100GeV. However, we can see easily that, e.g.,
A131 = /\231 = /\121 = 03, others =0 (224)

is allowed within these constraints. As you can see, we had better be aware that the
single-couplings are not the true bounds of the parameters, and we should review the
constraining equations, e.g., Eqs. (ZZ1) and (Z22), even if we overlook the bounds on the

products of the couplings.™

2.2.2 1 AND T DECAY: FOR A/, ETC.

Next, in order to constrain A/, we consider the values
— + — .t

(™ —>evy) _T(t->nvy)

TTU

(2.25)

" F(n‘—>yv;§)' - F(n‘—)luv;ﬂ)'

This discussion is also from Ref. [[3] and Refs. [[[1l, []. The processes induced by the

R-parity violating terms, and that of the R,-MSSM, are in Fig. 3.
The decay rates of the events are shifted by the R-parity violating processes as [[H, IA]*

I'(n — ev)) 2 _ 2
Tsm(mt — ev)) IVl Zk" i R%) e, (my, + md)r’k"k”@k) (2.26)

i

(T — v, 2 [ ~  1342MeV ]
=1+ — Lo (dRy) — ———— T3, , 227
Tom(T — 7T v7) Vol ; 311 (dRk) ——— Tiasa1 (eLk) (2.27)

2 We will see in the next discussion that overlooking the bounds on the products is not so bad because
generally the products are severely constrained.
*3 We calculate Eq. (ZZ2) by ourselves in App. I3, while Eq. (Z28) is obtained from Ref. [[A].
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dy > - - v dr
|
A Yo
|
ut < ¢ - eLi  ul
— /\’*
ilk
(a) (b)
dL V;.r
W-
uf eri
(*)
- élk + - :33
Qs > ® -t up TR -t ® > Vi
A7 d '
| de L Eii
31k f
Vr _Aill dR
(c) (d)
L - - Ve
W-
dp
) “

Fig. 2.3 Possible R-parity violating contributions to (a,b) n~ — eiv;f, (cd) T — m vy,
and (*,**) corresponding R,-MSSM processes. Note that i # k in (b), and i # 3 in (d).
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and thus the values R,; and R, are also shifted, as

R 2 .= .~
(RT[;;M =1+ |Vud| Z [rllk(de) B r21k(de)
K
7.624 x10*MeV 368.7MeV
B ; — T, 2.2
pra— rien (eLi) + ———— 7’2k2,k11(5Lk)l (2.28)
R 2 o
(RT;;SM =1 IVl Z [r31k(de) ~ o)
K
134.2MeV 368.7MeV
Ba— + g, 2.29
- riasiki1 (L) pr—— 7’2k2,k11(ELk)] (2.29)

Meanwhile, the Standard Model calculated results (denominators) and the experimental

values (numerators) are [{, [2]

R,  1.230(4) x10™* Ry 9.775(71) x10° (2.30)
(Re)sw  1.235x107 (Rep)sm — 9.771+0.009 %103 '

Therefore we obtain the following 20 = 95% bounds:

2
, ](100GeV
~0.0582 < ) {[ Ayl ](
k

2
4
A11k| -

m~
dr

2
x 97 . 1 100GeV
R [@145 Ay — a2 (= ) } <0028, (R, (231
CLk
2
B 5 ;2 ]| 100GeV
0.072% < Z {[ /\31k| A21k| ]( T
k drk
2
o . 1({100GeV
-R [a3Ak33Ak11 - 0‘2A2k2/\k11] - ) } <0.075%, (Rer) (2.32)
€Lk
where
7.624 x10*MeV 368.7MeV 134.2MeV
ar = , ) = ————, a3 = —————. (2.33)
my, + my my, + my my + my

* * *

These are, in the terms of the single-coupling bounds,
Al < 0.028, ASe < 0.058, Abyp < 0.075, (2.34)
for m = 100GeV.* We can see that the products of two (or more) coupling constants are

severely restricted. This is because they generally invoke exotic events not included in
the R,-MSSM.

4 Actually our calculated result is a bit different from the original one of Ref. [[2], which gives Aélk < 0.06.
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15

CL

A’ A/
i2k + k22
® - €L L ® - SR
| |
A @ Ri
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Fig. 24 Possible R-parity violating contributions to (a,b) D° — K ¢/v;, and corre-

sponding R,-MSSM processes. Note that i # k in (b).
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2.2.3 SEMILEPTONIC D AND LEPTONIC Ds DECAY: FOR A/,

Now the turn for A},. The discussion similar to what we did for the 7-decay in the
previous section yields some other bounds [[[3]. Now our targets are
R rp° — wrvK)
P T S et K)
I(D* — u*v,KO
Ry, = P72 HVeKD) (2.36)
['(D* — e*v,KO)
1"(DJr - y*vyf(892)0)
r(D* - etv.K(892))

(2.35)

R}, = (2.37)

and

_ I(DF — 1)
Rp (ty) == IDr S y*vy)' (2.38)

Note that the mesons are:
D° = (cin), D* = (cd), D; = (c3); K™ = (sin), KO = (sd). (2.39)

Thus the contribution of the R-parity violating interactions in Rpo, Rp+ and R}, are as
Fig. 4, and in Rp (tu) are the ones similar to (a), (b) and (*) of Fig. 3.

Here we ignore the bounds on the products for simplicity, that is, ignore (b) of both
Figs. 4 and 3. Then, the shifts are calculated as

RDU RD* R*DJ’ 2 _ _

B - =1+ —— [} (dri) — 115 (d 2.40

(Rpo)sm (Rp+)sm (R;y) [Vl [ ook (ARK) — 775, ( Rk)] ( )

SM
and Ro (e
p,(Tu o~ s
Ro gy Vel - : 41
Ro. e T Vel |P4aedri) = 7o) 2.41)

Considering the experimental values and the Standard Model calculated results, we can
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obtain
2
— 1(100GeV
026> < Y || =i || = | <015 (Ron) (2.42)
kK~ . M
2
- 1(100GeV
0242 < 3" | = i WGV 0372 (Rp) (2.43)
k . mERk
2
' 1(100GeV
025 < Y | =il || = | <030 (R} (2.44)
kK~ . M
2
(1., 12 , 12]1{100GeV
0247 < )" || = |15y ] <033 (Rp,(tp), (2.45)
T - - CRK

as the 20-bounds, and for the single-coupling bounds,

A5l < 0.15, Al < 0.24, A%yl < 0.33. (2.46)

2.2.4 THEN HOW ARE A;3k?

Now it is the time when we should discuss Al However, we cannot apply the above
discussions here, because these terms correspond to the bottom and the top quark. Thus
we must find another way.

To this end, it is appropriate to see the contribution to the one-loop correction of Ze e
vertex, but since this is much more complicated than the other discussions, we do not
discuss in detail. The corresponding diagrams are as Fig. 5, and this yields the following

20-bounds:

Ay < 0.47, Ay < 0.45, Ny, < 0.58. (2.47)

These are much looser bounds than we had obtained in the previous discussions.

2.2.5 (CONSTRAINTS ON B-VIOLATING TERMS: A;]fk

It is very difficult to obtain the constraints on the B-violating terms from collider exper-
iments, because in the discussion we have to examine the inner structure of baryons or
mesons, and to take the QCD effects into consideration. Thus we do not present the
procedure of obtaining the constraints here.

Actually, B-violating terms are severely constrained from cosmology, which we will
discuss in Chap.B. In the discussion, we will see that the B-violating terms are constrained
as

M- 1/2
" o<1 —6(—") ) 2.4
Aije 510 100GeV (2.48)
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eLi

+.
L?

(]

~

(*)

eLi

€

~

(**)

Fig.2.5 The contribution to the one-loop correction of Ze;e: vertex. The upper figures
are from the R-parity violating interactions. The lower ones are of the Standard Model,
from which we can obtain the R,-MSSM contribution by changing two of the three

intermediate particles to their superpartners.
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which is rough estimation of Eq. (B2), for all 7, j, and k, or

2
/Z 1l < @-5)x107, (2.49)
ijk

which is our more precise analysis, Eq. (E24).

2.2.6 A LIST OF SINGLE-COUPLING BOUNDS

Here as the conclusion of this chapter we present a list of the current single-coupling
bounds, Table D1

Here, we do not use the results derived from the neutrino mass bounds in this table

’
1337

on other structures. Also we do not use the gravitino- or axino-corresponding events as

except A}, for whichnobounds are known, because the mass of neutrino largely depends

sources.

Our discussion covers the starred values. The sources of the other values are: (1) A1
are from CKM unitarity, (f) A},; from the neutrino-lees double beta decay, (§) A},, and
Al from atomic physics parity violation, () A},, from forward-backward asymmetry,
(#) Ay and A%, from the contribution of the loop effect to Z-boson decay, (b) A7},, A7), and
A%, from neutron-antineutron oscillation, and (|[) AJ, and A, from the renormalization

group. We do not discuss these sources here.

77
2jk
We can see that almost all constraints are of order 107!-1073. We will see in Chap.
that we can give much more stringent constraints on not only B-violating couplings (as
we mentioned above) but also L-violating couplings if the lepton flavor is mixed enough

in the early universe.
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AijkLiLiLg /\;jkLinDk A;;kUiDjDk
121 | 0.03@* | 111 | 0.0007®% | 211 | 0.06@* | 311 | 0.06@* | 112 | ~ 1077©P
122 | 0.03@* | 112 | 0.03@* 212 | 0.06@* | 312 | 0.06@* | 113 | ~ 1077
123 | 0.03@* | 113 | 0.03@* 213 | 0.06@* | 313 | 0.06@* | 123 | 1.250
131 | 0.05@* | 121 | 0.03@S 221 | 0.1@* | 321 | 0.3@* | 212 | 1.250
132 | 0.05@* | 122 | 0.2@* 222 | 0.1@* | 322 | 0.3@* | 213 | 1.250
133 | 0.05@* | 123 | 0.2@* 223 | 0.1@* | 323 | 0.3@* | 223 | 1.250
231 | 0.05@* | 131 | 0.03@5 231 | 0.450%* | 331 | 0.58%%* | 312 | 0.002("
232 | 0.05@* | 132 | 0.28®)1 232 | 0.45®% | 332 | 0.58®* | 313 | 0.003©P
233 | 0.05@* | 133 | (0.0004)© | 233 | 0.450% | 333 | 0.58@* | 323 | 1.120l

Table 2.1 A list of the current single-coupling bounds when the mass of all the super-
particles are 100GeV. The data are obtained from (a) Ref. [[2], (b) Ref. [[3], (c) Ref. [I].
See the text for details.
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Appendix 2.i The RPV Contributionto v — v,

In this section we will calculate Eq. (Z22), the contribution of the R-parity violating terms
to the R,-MSSM result. The notations and conventions are all from Peskin’s book [[Z]
(See: App. AT for example).

This discussion is along Ref. [IH].

The operators which induce the processes are

( ) dy”PLu) (VT)/“PLT) (2.50)
O(C = EPLT (VTPLLl) (251)
k de
dy“PLu) (vayPLT) (2.52)
k de
Z k33 My (#2Pr7) (dPLut). (2.53)
k €Lk

Here we employed the Fierz identity in the derivation of the second operator. Then we

convert the # and d quarks to the pion, using [[IH]

(Ol @(x)y* Prd(x) |m(p)) = +% ple™P (2.54)
2 .
(O TG PRAC) [m(p) = if—v’% e, (255)

where f is the pion decay constant: f; ~ 92.4MeV. m (and p in the following equations)
denotes the mass (and the momentum) of each particle (pion, 7, v;, and up/down quark).

Now the amplitude (matrix element) M is calculated as

4GgV?
Masa= (-2 ) (< Zepe) ) e o

V2 V2
fn 4GF " uds ¢
B W) [P Pr] 1 (pe 2.56
V2 \/— (P)[?n R] u(pr) (2.56)
Moo = My + -2 T (po) [pPr] ' (po)
de
A 2
Z k33 K1 . "iﬂm () Prit! (p2). (2.57)

BLk
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Here note that the symbol u*/!(p) denotes not the up quark (as previous equations) but
the Fourier transformation of the particle, as Peskin’s book [[4, Chap. 3].

Therefore, using the approximation
Miotall® = [IMsul* + 2R (Mg Merv), (2.58)
we obtain the following result:

Mswi = C - |4(pr - p)(pre - po) = 2002(py - o) (2.59)

[l

R (MaMuo) =€ =70

[4(pn - ) - po) = 22 py - o)

2z (eLx) m2

[Vl my, + myg

Here C = |2GF Vi fr 2, but we do not interested in this value. We have neglected the phase

of V4 for simplicity.

Since this is a 2-body decay process, taking 7’s rest frame, we can determine the

momenta as

P'c — (nz)”[)’ pn — [ﬂm% + Pz]’ Pv — (”Z”), ||p|| = 1,11’[,2[ + m% — My, (261)

P

and obtain the following result:

I'(t - nvy)

_ [7’ 134.4MeV
Ispm(t — mvy) |Vud|2

. ) 3 2.62
pr— rk33,k11(5Lk)] (2.62)

L (dri) —

We use the numerical value 134.4MeV instead of the symbolic notation for simplicity.
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Chapter 3
Universe before EWPT

In this chapter we discuss the properties of the universe between the SUSY breaking
and the electroweak phase transition (EWPT). We consider the era when the tempera-
ture T of the universe is 10TeV > T > 100GeV. Here we concentrate on the minimal

supersymmetric standard model (MSSM).

Section 3.1 Preliminaries
3.1.1 MASS STRUCTURE OF HIGGS SECTOR

To begin with, we shall consider the property of the Higgs sector before the EWPT.

The mass terms of the Higgs bosons under the MSSM are given as, if the R-parity is
conserved,*!
Q&

2
v P 2 (a2 1) + S ()

(3.1)

2 2
where m;? = |y| + mZHd, my? = |y| +my

and in order to invoke the electroweak symmetry breaking, the parameters must be so
that the minimum is not at HY = Hg = 0. (See Egs. (B2) and (B3) for the meaning of each
parameters.)

However, in the early universe where its temperature T is above > 100GeV, thermal
effects “hold up” the potential and thus the minimum would be HY = Hg = 0. Therefore,
in this era, the electroweak symmetry SU(2)yeak X U(1)y is (still) alive. In this thesis we do
not discuss the details of the thermal effects, and go on with regarding the electroweak

symmetry as unbroken.

“1 This potential is also discussed in App. B3 with the R-parity violating terms. Or as a nice review, see
Ref. [B, Sec. 7].
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Meanwhile, higgsinos, four Weyl fermions, form two Dirac fermions whose mass are

both |ul:

W D uHyHg + H. c. (3.2)
— LD y(ﬁiﬁé —I;I‘gﬁg)+H. C.
= —|ul (U*Hd_ H:ﬁ) (nII:IIng) = |ul (U*Hg Hgf) (ngggf)
= UV — WD, (33)

Here, W and \I’OD are Dirac fermions, and 1) is a phase defined as —1* := p/|u|, which is
with no importance.

Note that these higgsinos do not mix with gauginos (or leptons) to form neutralinos or
chaginos before the EWPT.

3.1.2 SPHALERON

7%

In the Standard Model, we have an anomalous interaction, called the “sphaleron”*“process.[[8,

[[@, 0] This is a 12-fermion interaction which is symbolically illustrated as

0= [] (aafal (3.4)

i=1...3

where i is the generation index, and R, G and B denote the SU(3)strong color. For example,

we have
c's" > uddstbbv.v, v, (3.5)

interaction. What is important is that this process violates the baryon and lepton number
B and L, but does not violate B — L. Now in all the interactions, B — L is conserved.

This process originates the anomaly of the baryon- and lepton-current: | ﬁ and ]ﬁ:

]5 ::% Z Zq_LVML/ ]ﬁ = Z E)/ylL} (3.6)

generation color generation

2 1 V [0}
9, JPH = 9, = 16i S Tr (€77 Wi W) (3.7)
_3g22 oo 2
- ayl e T (W W, + 51ngwpvvc,)]. (3.8)

2 spahepov, depie from colepde.
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(See App. A for notation. Especially note that W, is the W-boson field and W,,, is its field
strength.) We can see that the B and L are violated here, by the instanton effect, that is,
the sphaleron process can be regarded as the transition between vacua, B and L of which
are different by the same number. Here also note that B — L is conserved.

As this process is the transition between vacua, between which an energy barrier

stands, its probability is suppressed by the factor

81>
g?
However, Kuzmin, Rubakov, and Shaposhnikov [T] found that in early universe before
the EWPT this process is enhanced by thermal effects, and even exceeds the Hubble

expansion rate. Also Ringwald calculated [P2] the rate to find that the process would

exp( ) ~ 1078, (3.9)

achieve equilibrium.

Their study is based on the Standard Model, not the MSSM, but can be applied to our
MSSM case. In the MSSM, we have another SU(2) fermion, the higgsino. Therefore, the
interaction is illustrated as™

O =nhyha || (aRaCaPL). (3.10)
i=1..3

In summary: there is the sphaleron process in the early universe before the EWPT, and

it is strong enough to achieve equilibrium. It conserves B — L, but violates B and L.

3.1.3 RELATION BETWEEN NUMBER AND CHEMICAL POTENTIAL

Next we derive the relation between the number density of a particle and its chemical
potential.

Here we define the “yield” N of a particle by the number density n as
i
T3’
where T is the temperature of the universe. This is expressed by the distribution function

N := (3.11)

f and the degree of freedom g of the particle as

n g d3k
== =7 . 12
N=fs=5 [ Gosr (3.12)
f(k) is the Maxwell-Boltzmann, the Fermi-Dirac or the Bose-Einstein distribution
B=— Y — K= —— 3.13
fMB( ) - e(E_‘u)/T’ fBE( ) - e(E—H)/T _ 1’ fFD( ) - e(E_#)/T + 1 ( . )

*3 Note that these higgsinos form Dirac fermion, as we discussed just above.
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E is the energy, which is given by m?2 + [|k||*>, and m and p are the mass and the chemical
potential of the particle, respectively.

However, number density cannot be calculated analytically, as long as we use the Bose—
Einstein or the Fermi-Dirac distribution.” To obtain an analytical expression, we ought
to use the approximation that the particle obeys the Maxwell-Boltzmann distribution.

Then we have the following expression:

8

Nup = ;Pz (E)exp(ﬁ), where Fi(x) := ¥*Ki(x). (3.14)

T T
Here, K;(x) is the modified Bessel function of the second kind. If the particle is massless,
we use F»(0) = 2.

In the next section, we will calculate relations between chemical potentials in the early
universe. Actually, during the calculation, we will come down to use this approximated

expression.

Section 3.2 Relations between Chemical Potentials
¢ Gauge bosons and gauginos

Start from the gauge bosons. We have the gauge self couplings W-W'-W*-W~ and
WO-W*-W~. This means that we have both X - YW'W? and X — YW? events, and
therefore X = Y + 2W? and X = Y + WP. (The symbol = denotes “equal in terms of the
chemical potentials” in this section.) Thus we know that WY = 0 and W* + W~ = 0. Also
this fact tells us that the sum of the chemical potential of a particle and its antiparticle is
zero: X = —X, as well as that of B-boson is zero: B = 0.

Here, the Majorana mass of W and B allows us to have the process
3R+E§—>§—>§+—>€E+?R (3.15)

etc. as Fig. B Thus we know W = B = 0, and the chemical potentials of a particle
and its superpartner are the same: X = X. Also we have 3-point interaction W-W*-IW-,
which tells us W* + W~ = 0. Considering gaugino-gaugino-gauge-boson interactions,

we conclude

B=W=B=W"=0, WH=Wr=z-W =-W-, X=-X=X=-X. (3.16)

*“ Incidentally, we present more detailed discussion on these distribution functions and the numerically
calculated results in App. CT2.

*5 The expression (BI2) results in F2(0) = 2 if we use f = fyp and m = 0, while the limit of the modified
Bessel function gives the same result: lim,—, x*K;(x) = 2.
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€rR e

Fig. 3.1 In the presence of Majorana mass, this kind of processes occurs, which guar-
antees that the chemical potential of the particle is zero. See the text for details.

We will not discuss the relations for gluon and gluino, since they are much more
complicated. Actually, most of these discussions which we have done for gauge bosons

and gauginos will be spoiled by the (strong) presumption which we will introduce later.

¢ Matter and Higgs sector

Let us go on the quark sector. Since we have the CKM mixings which are strong enough

to achieve equilibria, the chemical potentials of quarks are flavor-independent. Therefore

up=c o=t =d o+ W =s.+ WH=b + W, (3.17)
UR = CR = Iy, (3.18)
dR = SR = bR. (319)

The lepton sector actually has mixings, PMNS mixings, but here we leave the chemical
potentials as flavor-dependent. We will discuss whether the mixings in lepton sector

achieve equilibria or not in the next chapter. Now we take only
vi=zey + W' where i=1,2,3 (flavor index), (3.20)

into consideration.

For the Higgs sector, we know
H = H) + W*, HY = Hy + W. (3.21)

That is all for the quark, lepton, and Higgs sector.*

*6 Note that we have already derived the relationship of the chemical potential of antiparticles and super-
partners at Eq. (B18).
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Usually when we discuss whether the process is strong enough to achieve
equilibrium or not, we compare the process rate versus the Hubble parameter, as
we will see in Sec. ETA. The Hubble parameter H is, as is discussed in App. C13,
roughly given as
N 25T

pl

H (3.22)

On the other hand, considering quark scattering mediated by W-boson as the
CKM mixing process, the rate of the process under thermal effects is approximated
as (See: Ref. [3] or Eq. (B3))

r

L&, (3.23)
4
where g, is the gauge coupling ~ 0.65 and 0 is the CKM mixing angle. The
CKM mixing angle is = 0.2 for Q;—Q, mixing and ~ 0.008 for Q;—Q3 mixing [[@].
Therefore,
r

— ~0*-10" (3.24)

-1
(1OOGeV) > 1,

and thus CKM mixing is considered to be achieve equilibria.

* * *

From this assumption, usually it is said that

if 0 > 1077, the process is equilibrated, and if not, the equilibrium is not
achieved.

However, to discuss precisely, we have to solve the Boltzmann equation, which
describes the time evolution of a value. This is what we will do in the next chapter.

@ A strong presumption

Before discussing the ¥l interactions, we introduce an above-mentioned strong pre-

sumption. That is, all the particles must have been generated with gauge-invariance. For

example, the number of electrons is the same as that of electron-neutrinos, and the

number of red-colored quarks is the same as blue- and green-colored quarks. Since the

masses of the particles in a gauge multiplet is the same before the EWPT, these equalities

in numbers yield equalities in chemical potentials

UL, red = UL blue = UL green, eL = Ve, (325)

and so on. Now we know

W+ = W+

(3.26)

1

oQ
1

il
I
o
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€ Superpotential and sphaleron process

Now we have only 12 independent chemical potentials, those of the following particles:
H), HY, wu, ug, dr, I I (3.27)

This fact tells us that “the particles in a supermultiplet have the same chemical potentials.”
Therefore, from now, we use names of the supermultiplets instead of particles to express

relationships between chemical potentials:
HLII Hd/ Q/ UI D/ Li/ Ei- (328)

(Be careful that, as the right-handed fermion are barred, U = —ug, and so on.)
Anyway, we have other three types of constraints, those which come from the super-
potential, the sphaleron process, and the conservation of the hypercharge.

The constraints from the %;/I[ interactions are expressed as
o + pp + pm, =0, o+ pp + pa, =0, ML + Qg + piEy = 0. (3.29)
Similarly, the u-term gives us a relation
uH, + pH, = 0. (3.30)

The sphaleron process results in the following relation, as we discussed in Sec. BT2:

o+ Y i, + ph, + i, = 0. (3.31)

@®Hypercharge conservation

The last constraint, the conservation of the hypercharge, is a bit complicated. As we are
under the “generated with gauge invariance” presumption, the sum of the hypercharge
over all the particles in the whole universe is zero. Therefore
1 2 1 1 1 1
—nio,1 — =Nig1 + =Hp — =N + Nieq |+ =n - =n =0, 3.32
Z (6 [Qi] 3 (Uil 3 [Di] 2 [Li] [Er]) 2 [Hu] 2 [Hal ( )

i=generations
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where n[x; denotes the whole effective number of the particles which belong to the

supermultiplet X. For example,
Moy == Z ma;
i
F ¥ g o)

generation color

S R I
oo T oo ()2
S WER

We have used Eq. (B14) with approximating the distribution functions as the Maxwell-
Boltzmann type, the fact that quarks are massless before the EWPT, the approximation
that sinh(u/T) =~ u/T, and gu, = &i, = 8yt = &, = 1. Note that njy; denotes the effective

number of antiparticles, as well as p;. We have also defined
Gett (¥) 1= 2+ Fa(x) = 2 + x*Ky(x). (3.34)
Next we do the following approximations to simplify Eq. (B32):

e all the squarks have the same mass m,
e all the leptons have the same mass m;,

e all the Higgs bosons are massless.

Then we obtain

O:gff(ﬁ)l 18ug — 3 - g + 3 - 9up
\T T
m —1.2 Li+1' F.
+deff(%) 2 MT = (3.35)

_H
T

(3.36)

s mz
(2532 (2] 2
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4 Conclusion

As a result, we can express the chemical potentials of the MSSM particles by only four

parameters u, and up, as

1__ 1__ 1__
Ho = —gl«lb pa = gﬂL + UHy, Up = gﬂL — UHq4,
HE, = —HL, — HHq, UH, = —UH,, (3.37)
where 1
i =3 Z e (3.38)

Also py and up, are related as follows:
ety = —Cr (T) T, (3.39)

where
2gef (mq/ T) + 6Qeff (mf/ T)

Cy,(T) := .
Hy (T) Oger (mﬁ/T) + 3eit (m;/ T) + 2geff (mﬁ/ T)

(3.40)

When we assume that g.¢ = 4 for all the particles, which means all the particles
are massless or the temperature is extremely high, we obtain

4
Ch, = 7 (3.41)
1 —
Hoaryon = 3 (18[1Q = ug - 9#5) = —4u; (3.42)
51
Hlepton = Z (Z”Li - {JEi) = 71 (343)

1

and the well-known result reappears:

28
Hbaryon = 7_9 ([Jbaryon - [fllepton) . (344)
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Chapter 4

Cosmological Limit to RPV
Parameters

Now we are ready to discuss the strong constraints on the R-parity violating couplings

which come from cosmology. This chapter is devoted to the constraints.

Section 4.1 Introduction
4.1.1 OVERVIEW

There the baryon is, though the antibaryon is not. We can create antibaryon only in
colliders, and even when we create antibaryon, they immediately annihilate.

Why does this universe have baryon, and no antibaryon? Our Standard Model contains
the baryon—antibaryon symmetry, but the universe does not, and the baryon number B
is positive: B > 0. How come the symmetry broke up in the early universe? How was
this baryon—-antibaryon asymmetry brought to us?

This is one of the biggest problem in cosmology. Even in 1967, when we did not know
T-lepton or charm quark, Sakharov [P4] put forward the famous three conditions. Also,
many models to achieve the asymmetry are proposed. In this thesis we do not discuss

the models, and focus on the following important fact:
large B-violation might wash out the asymmetry.

Especially the UDD coupling in the MSSM do wash out, and thus critical.
However, the story does not end here. Before the electroweak phase transition (EWPT)
of the universe, there is the sphaleron process, as we discussed in Sec. BT2. The sphaleron

process transforms baryon into lepton, or vise versa, and thus

violation of lepton number L might also wash out the baryon asymmetry.
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Though a good loophole to avoid this L-violation constraint was found. Note that the

sphaleron process preserves not only B — L but also

1 1 1
§B - L, §B -L, §B - L, 4.1)

respectively. Therefore, supposing that one of the lepton number, say L3 (or L), is
exactly conserved, sphaleron could not erase B even when the other lepton numbers are
completely violated. B/3 which corresponds to Lz would survive in this case.

However, this loophole can be covered. Davidson pointed out [2H] that lepton flavor
violation (LFV) would spoil the separated B/3 — L; conservation. Think again. If we have
LFV processes, and they mix all the three generations e, u and 7, then the separated
lepton number L; are not “conserved number,” and therefore any L-violation process must

be small lest the baryon asymmetry should be washed out.

* * *

This is our story. Endo, Hamaguchi, and the author found [[] that such LFV processes
which can be strong enough to wash out the baryon asymmetry are naturally expected in
typical SUSY GUT models, and calculated the bounds on the R-parity violating parame-
ters. In this chapter, we review the work more verbosely.

But before reviewing the work, we will move back to past discussions as an introduc-

tion.

4.1.2 B-VIOLATION ERASES BARYON—ANTIBARYON ASYMMETRY

As we mentioned, B-violating processes spoils the baryon asymmetry. Bouquet and
Salati estimated [3] these bounds. They assume that the existing baryon asymmetry was
produced in T 2 100GeV era, and under this assumption concluded that the B-violating

coupling A" must satisfy

— 1/2
g )/

A <1 -6(
<107\ T00Gev

(4.2)

lest the asymmetry should be washed out. This constraint is much stricter than those

which we obtained in Sec. 2.
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The procedure of their estimation is as follows.
They considered gq — gy as a annihilation process, and estimate the annihila-
tion rate I' and the Hubble expansion rate H (See: App. C13) as
N a ANZ TS T2

~ , H=20—, 4.3
4r (T? + 7;1227)2 My, *9)

and also consider the baryon-washout process would be out of equilibrium if

H>T for T 2 mg. (4.4)

These conditions result in the bound (E22).

4.1.3 L-VIOLATION MAY ALSO BE HARMFUL

Also L-violating processes would, in presence of the sphaleron effects, wash out the
baryon asymmetry. This feature was first pointed out by Kuzmin, Rubakov and Shaposh-
nikov [T] in 1985, and Campbell, Davidson, Ellis and Olive applied [Z6] this effect to the

constraints on the R-parity violating couplings. The bounds are first estimated [27Z, Z8] as

1/2
_7 [ Msusy
I < 7 .
AN, A7 <10 (—1TeV) (4.5)

by discussions similar to what we explained just above, and subsequent works [9, B0]
support this estimation.

It was pointed out in Ref. [BI] that the wash out can be avoided if at least one of
B/3 — L; is conserved. Dreiner and Ross [B2] applied this fact to the R-parity violating
couplings. Davidson mentioned [PH] that the lepton flavors are unlikely to be conserved
in supersymmetric standard models, and also noted that LFV effect would cover the
loophole. Then the constraints on the L-violationg couplings reappear. In the paper, the

following bounds are estimated:

2
my)ii
AN <107, i <5x1072, (4.6)
(m})ii

where the former is the baryon wash out bounds for the lepton-number violating couplings,
and the latter one denotes how small should the lepton flavor violation be in order to
realize the “separatedly conserved” loophole. Here, (m?);; is the slepton mass matrix in
the MSSM SUSY part (B4).
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Now what we will discuss is much more nice calculation of these bounds, which Endo,

Hamaguchi, and the author presented in Ref. [I].

4.1.4 CLARIFICATION

Here we clarify the condition: we cannot obtain the current universe (the presence of the

baryon asymmetry) if

e the present baryon asymmetry was created before EWPT, and

the B-violating processes are strong enough to wash out the baryon asymmetry,

or

the present baryon asymmetry was created before EWPT,

there is no source of baryon asymmetry after the EWPT,

the L-violating processes are strong enough to wash out the baryon asymmetry,

and

these L-violating processes invade to all the lepton generations, i.e., for all L;’s, at
least one of the following conditions is satisfied:
o itis directly attacked, e.g. we have W > H,L;, L,LE, or L;QD interactions, or

o it is mixed by LFV processes with another generation L;, and L; is attacked.

Section 4.2 Lepton Flavor Violation Bounds

First, we discuss how fast the lepton flavor is mixed under LFV processes, in other
words, how large violation is necessary to mix the flavors. Here, we do not introduce
any R-parity violations to concentrate on the effect of the LFV.

In the MSSM with the R-parity, we have the following lepton interaction terms:

e gauge interactions,

e %]l interactions,

2

EI

e aSUSY trilinear term a, (which we ignore here).

e SUSY slepton mass terms m? and m

Usually, to discuss the low energy phenomenology of the LFV, we use the basis where

the %1l matrix is diagonal as well as the gauge interactions. In this basis, we have a term

W D (y.)iLiEiHq, (4.7)
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which has no mixing, in the superpotential, and soft slepton masses with lepton flavor
violation o

—L > (m?);LiL; + (m2)iee; (4.8)
in the Lagrangian.

To discuss the LFV effects in the early universe, however, it is more appropriate to
take the basis where the slepton mass matrices are diagonal [P3], as well as the gauge
interactions. Note that the gauge interaction is more suitable to be diagonalized than the
%11 interactions, because the gaugino-slepton-lepton interactions are stronger than the
%1, and therefore we cannot let the gauge coupling not diagonal with making the ¥
JIl matrices diagonal. Thus, starting from the basis where the %!l matrix is diagonal,
we rotate the leptons and the sleptons by the same matrix, which guarantees that the
gauge interactions remain diagonal, so that the mass matrices should be diagonalized.

Assuming that the mixing angles are small, we can express these rotations as

Li—Li+Y 6L, Ei—E+) O, (49)

i#] i#]
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Fig.4.1 Time evolution of Ny;,_r,j for slepton mixing angles Q%E =1x107%3x%x10°,
and 5x107, from the top to the bottom, for m 7 = 600GeV, m; = 200GeV, and tan = 10.
The vertical dashed line denotes the sphaleron decoupling temperature T. =~ 100GeV.
The normalization is arbitrary. The time evolution of Ny, _p,; for G%E =(1-5)x10"is
almost the same.
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Note that those mixing angles are different from the dimensionless parameters

. (m%)ij
(6g)ij = (m2);” (4.10)

(m3);j
(01)ij = =+
! m%)ii

which are familiar in the context of the LFV rare processes. They are related as

Am Am%

m? . m2
Ql-L]- = (—Lz) (6L)ij/ 95 = (—E] (512)1']'- (4.11)
L

In this new basis, the LFV effects appear only in the %Il couplings, which are given

by
Wipy D Z hi]‘LiE]‘Hd where hi]' = (ye)h@f;. + (yg)]‘jQ]L.i. (4.12)
i#]

For instance,

h23 = ]’l29§3 + h36§2

tan (4.13)

~ (0.0061 - 0, +0.10 - 6%,) (W)

We now estimate how much the lepton flavor asymmetry L; — L; is erased due to the
above LFV interactions. To this end, we solve the Boltzmann equation for the evolution
of L; — L;. Here, for simplicity, we include only the effect of the higgsino decay and its
inverse process, H 2 LE j and He LiEj, assuming that the higgsino is heavier than
the sleptons. Other processes such as 2 — 2 scatterings and those with Higgs bosons
may be comparably important, but it is expected that the bounds on the mixing angles
will change only by order one factors. Note that these additional effects only strengthen
the erasure effect, and therefore the bounds which we will derive should be regarded as
conservative ones.

For an introduction of the Boltzmann equation, see App. Eii. In the appendix, we also

derive the Boltzmann equation which describes the lepton difference L; — L; as

TiN _ 16(1“1] + Fﬁ) Fl (mﬁ/T)
P Ey (myT) 42

N[Li—L/‘]/ (4.14)

where T is the temperature of the universe, H is the Hubble parameter, F;(x) := x?K;(x)
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with Kj(x) being the modified Bessel functions of the second kind. Ny, is defined as

Niz-1;7 7= Nizg = Niy) (4.15)
MLy L)
= (4.16)
and here Ny}, nj,], etc. denote the “effective yield,” or the effective number density, of
lepton in i-th generation (See: Eq. (B33) as an example). The partial decay rate I';; is given
by

321 mﬁz

5 ( m JZ
Fi]‘ = 5o My 1-—=1, (4.17)
where mp and m; are the masses of higgsino and sleptons, respectively. We assume
that the slepton masses are approximately the same, as the end of Sec. B2A. Note that
the Boltzmann equation (BT4) is symmetric under the exchange of the left-handed and
right-handed slepton mixings, GI.L]. © 65., i.e., they give the same effect on the evolution of
N [Li~L;]-

In Fig. BT, the time evolution of Ny, is shown for Q%E ~ (1 -5)%x107°, for mg = 600
GeV, my = 200 GeV, and tanp = 10. One can see that the flavor asymmetry is rapidly
decreased for T < mg, and almost washed out for G%E > 3 x 107°. The time evolution of
Ni,-1, for Q%E ~ (1 —5) x 107% is essentially the same.

In Fig. B2 and Fig. B3, we show the dilution factors

Ni-r,1(T%)
Di_pq:= . 4.18
[Li—L;] N[Li—Lj](T > T*) ( )

as functions of the mixing angles GZ.L/ E, where T, ~ 100 GeV is the temperature when the
sphaleron process is decoupled. In the numerical calculations, we take T. = 100 GeV,
mg =200, 600 and 1200 GeV, m;/ mg =04 and 0.8, and tan f = 10. Note that the dilution
effect is weaker for mz = 200GeV than for 600GeV. This is because for mz = 200GeV the
duration of the L; — L; erasure is shorter than for mz = 600GeV.

One can see that the lepton flavor asymmetries L, — L3, L1 — L3, and L; — L, are washed

away for
04F > (0.3 -1.0)x 10 tf"lr(‘)ﬁ _1, (4.19)
0% 2 (0.3-1.0)x 1075 - tirz)ﬁ _1, (4.20)
O1F 2 (0.6 -1.6)x 107* - tirgﬁ _1, 4.21)
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Fig.4.2 The dilution factor Dy;,_r,) (Dj,-1,]) as a function of the slepton mixing angle
0L, (64) or 6L, (6F,), for mg = 600, 200 and 1200 GeV, from the left to the right. The
slepton mass myis 0.4mp for the solid lines and 0.8mj for the dashed lines. We took
T. = 100GeV and tan g = 10.
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Fig. 43 The same as Fig. B2 but for the dilution factor Dy, _1,; as a function of the
slepton mixing angle Q%E.



Chapter 4 Cosmological Limit to RPV Parameters 41

respectively. (We take the value where the dilution factor becomes Dy, ~ 0.01.) If any
two of these inequalities are simultaneously satisfied, all lepton flavor numbers become
essentially the same: L; = L, = L3, and hence B—L;/3=B-L,/3 =B - L3/3.

4.2.1 NOTE: SUCH LFVS ARE NATURALLY EXPECTED!

Here we will present that these (enough large) LFVs are naturally expected from the

viewpoint of higher energy theories.

47 and the right-handed neutrinos

First, let us see that m? would be an actual source of the LFVs in the presence of the
right-handed neutrinos. This discussion is along Ref. [B3]. We describe the right-handed
neutrinos in the superfield notation as Nj, like the right-handed electrons E;. They are
singlets of both SU(2) and SU(3), and have no hypercharge. Thus the superpotential is

modified as _ -
Wrec+= (yv);; HulNiLj + (un);; NiNj, (4.22)

and also the SUSY part is modified as
Lsysy+= — (mg)ijpﬁ::;j — ((bN)ijapﬁj + (av)inu]‘;ifj + H. C.) (4.23)

Here, for simplicity, we consider only the R-parity conserving terms.”! This super-
potential Wrpc explains the experimental fact that the (left-handed) neutrino mass are
extremely small, with the see-saw mechanism [B4, B3]. Here, uy is assumed to be ex-

tremely large.

2 . *
_ Mipj Yvkp Yvii
i —— - -

Fig. 44 One of the new contributions to the renormalization group equation of m?
under the right-handed neutrino N;.

1 For your information: Wrpy+= b;N; + y;HquNi + y;]'.kNiNij.
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Note that we cannot diagonalize both y, and y, without disturbing the SU(2) gauge
symmetry.”?> Here we have diagonalized y,, and thus v, is not diagonal. Then, the right-
handed neutrinos contribute to the renormalization group equation. Fig. B4 is one of

such contributions, and the equation is modified as

d >
dlogE(mL)ij ldlogE( L)”]

T [(inﬂi YLy + 2y i)
MSSM

2 t +
+2my (yv}/v)l. it 2 (avav)l.]] . (4.24)
Here, we assume that the SUSY parameters are unified at the unification scale My, as

(mL)l‘]‘ = moéij/ m%{ = m%, (ﬂv)i]' = a%. (425)

u

Then we obtain an approximate solution for the additional contributions to the mass

terms:

(Am%)ij ~ 16 S (y)ij (6m0 + 2‘10)108 Mpl (4.26)

where My is the mass of the right-handed neutrino. (We assume that the masses are
nearly independent of the flavor index.)

Finally we obtain

" (= )),
(mf),.j ¥ 1 3m2 + o My (4.27)
- 87'(2 (yV)kz (yV)k] IOg Mg (l s ])
Thus 01, which is defined as Eq. (B10), is now

3 +a? My,
(6L)ij 877 Q-2 (yV)kl (yv)k] log Mg ~0.1- (yV)kz (yV)k] ’ (428)

where a2

:= a3/m3. Note that the rotation angle 6" is much larger than §;, as we saw
in (BETD). Therefore we can conclude that our results Eqs. (BE19)—(EZT) are naturally

expected.

Om% and GUTs

Next, we discuss to conclude that mé can also be expected to be large enough to mix the

lepton flavors when we consider SU(5) grand unified theories (GUTs).

*2 In the Standard Model, we diagonalize both of them, which results in flavor violating W*-g—q interactions.
See App. B2
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It is expected that our U(1)y, SU(2)weak and SU(3)color gauge symmetries are unified at
some very high energy, and many models are proposed as such unified theories. Here we
consider SU(5) GUTs, where our three gauge symmetries are unified to one SU(5) gauge

symmetry at some high energy scale Mcur.

To be honest, it is a bit difficult to embed the R-parity violating SUSY models
into SU(5) GUTs, because we need B- or L-parity conservation instead of that of
R-parity, and they draw a sharp contrast between baryon and lepton.

You can see this feature by considering the interactions, which we will present
in Eq. (B32). The R-parity violating interactions UUD, LQD and LLE appear all
together.

However we do not discuss those matters in this thesis.

Our superfields are embedded in SU(5) representations as follows:

10, > Q;, U;, E;, 5,3 D;,L;, 54 > HS, H,,, 5y > HS, Ha. (4.29)
Here, HS and HY are “colored Higgs” of up-type and of down type.

The colored Higgs particles are considered to be extremely heavy, lest the
proton should decay via the interactions UDHCC1 and QLHg (See Eq. (B32)) with a
process like Fig. I7Tl). The decay rate is

(4.30)

5 40 4
4 mproton _ 1 |(yC)11 ' 10°GeV
O~ el =g x3=1 x10%yr | 10-° M )’

where M is the mass of the colored Higgs. Thus the mass must be heavier than
(at least) 10"°GeV, and usually considered as ~ Mcyr.

We can form the following gauge singlets:

10105 1055 55, (4.31)

Table 4.1 The property of the heavy particles which we introduce in this section. See
Tab. B for the MSSM particles.

Neutrino (chiral multiplet) | |Colored Higgs (chiral multiplet)
SU@B) SuU@) U(@) SU@B) SU(Q2) U()

N; 1 1 0 HS 3 1 -1/3
HS 3 1 1/3
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and thus the following terms in the superpotential can be obtained:

(ya); 10105y — —4(ya); |QQHS + (TiQ; + U;Q:) Hu + (TLE; + U,E;) HS |,
(y8)ix 10:55c  — (y)iy [Uz’DjDk —EiLiLy - Qi (L]’Dk - Lij)],

(yo);j 10,55y — (yc);; (UiDng —EiLjHq — Q:DjHq4 + QiLdeC)/ (4.32)
1 55y — u(HSHS + HuHy),
i 5H§i - Ui (HSDZ + HuLi) .

Now consider that we are above GUT scale Mgur, and let us do the mass-
diagonalization procedure as we did in the Standard Model (See: App. A Z3). In other
words, we will write down Eq. (B32) in the basis which we usually use in the Standard

Model. We have the following terms in the superpotential:
W D (y.)ijUiHuQ; + ()i HS UGEj — (va)ijDiHaQ; — (ya)i;EiHaLj, (4.33)
where v, is symmetric (at least at the GUT scale), but not normal*?, so we have to use the

singular value decomposition method. The procedure is similar to what we will present

in App.[A23, but here, as y; = y., the rotations are
Q- ViQl, PV, LeVIL, U-dU D-®'D Ew- O (434)
and the superpotential would be diagonalized:

W D (y3)iliHu Qi + (v,)iHg Ui (%CD:;)U E; - (y,)iDiHaQ; — (y,)iEiHaLi. (4.35)
(Note that this equation is written in mass eigenstates, and y; and y/ are diagonal.)
What is important is the non-diagonal term. This non-diagonal matrix W, @} is the very

Cabibbo—/Mt—28)1l matrix Vckw, and therefore we have
W S (y)iHE U, (Vexan)ii Ef (4.36)
in the superpotential. This term would contribute to the renormalization group equation

of m? as Fig. E3.

X] Yu l ]

we can approximately write down the contribution to mé as

3 My
2\ . _ 3. ((Ggr2 2 p
(Amﬁ)i]‘ iy (X" X)jj (6m0 + 2a0)log Meor (4.38)
w2 Verm)s(V '(6m2+22)1 Pl 4.39)
Ry (V)33 (Vexm)z;(Vexm)sj (6m + 2a5 ) log Mot (4.

3 A matrix A is “normal” when it satisfies AAT = ATA.
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2 )
Mepi Xap X5

Fig. 45 One of the new contribution to the renormalization group equation of
under the colored higgs. Here X;; := (y;)i(Vcxm)ij

Here we assume that the mass of the colored Higgs is ~ Mcur, and the coefficient 3 comes
from the SU(3)color Symmetry.

Therefore 0 is

3(3 + aZ) 7\2 * Mpl
(0p)ij = W(yu)%(VCKM)g,i(VCKM)?)]' log Moot (4.40)
107* for 1-2 mixing,
~ {107 for 2-3 mixing, (4.41)

10~  for 1-3 mixing.

Therefore 6F is also expected to be large enough to mix all the lepton flavors, and it is

natural for us to assume that all the lepton flavor asymmetries are equilibrated.

Section 4.3 Implications for the R-Parity Violation

In the last section Sec. B2, we showed that, under the large slepton mixing angles which
satisfy at least two of Egs. (B19)—(E=21), all the lepton flavor asymmetries are equilibrated,

ie.,
L1 =L, =Ls. (4.42)

Also we have shown just above that such large slepton mixings are expected in a wide
class of SUSY models. Therefore, not only the B-violating coupling but also L-violating
ones are expected to be constrained by the cosmological constraints.

In this section, we discuss the bounds on the R-parity violating couplings, assuming

that we have such large lepton flavor violations.
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4.3.1 COSMOLOGICAL BOUNDS ON THE R-PARITY VIOLATION IN THE
PRESENCE OF SLEPTON MIXINGS

We assume that at least two of Eqgs. (BET9)-(BEZT) are satisfied, and hence all B — L;/3
are equilibrated. Then, in order to avoid the baryon erasure, any of B — L;/3 violating
processes should not become effective before the electroweak phase transition.

We calculate the dilution factor

NB—L(T*)
Dgj=—77"-—""— 4.4
P Np_(T > T.) #4)

as functions of the R-parity violating couplings A; , /\lfjk, /\lf]’.k, and x;.** The corresponding
Boltzmann equations are shown in Appendix Bii3. The results are shown in Figs. E8-239.
Here, for simplicity, we have assumed that all sleptons and all squarks have the same
masses myand m;, respectively.

From the figures, one can see that the couplings should satisfy

2
Y 1l s @5 x107, (4.44)
ijk
2
Ayl s G- 6) x1077, (4.45)
ijk
Y sl < 06-1) x10°, (4.46)
ijk
Y= il < (122) x10-6 2P ) 4.47
y (1-2) 0 | - (4.47)

i
for mz ~ 200 — 1200GeV and m; ~ 100 — 400GeV. (Again, we took the value where the
dilution of the B — L becomes D3_; ~ 0.01.) We should note that the bounds on the UDD
coupling Alf]’.k in Eq. (B44) apply even without the lepton flavor violation.

These are our cosmological constraints on the R-parity violating couplings. As you
can see, these are much severer than what we obtained in Chap. B. Also these are very

important for collider phenomenology, which we will discuss in the next chapter.

“4 We do not discuss the bounds on the R-parity violating soft terms, for simplicity.
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Fig. 4.6 The dilution factor Dp_; in the presence of an R-parity violating term
N'U;U;Dy for mz = 600, 200 and 1200 GeV, from the left to the right. We took
m; = 100GeV and my = 300GeV, but this result is nearly independent of these masses.
Other parameters are: tan § = 10 and T. = 100GeV.
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Fig. 4.7 The same as Fig. B8 for A’L;Q,Dy interaction. Parameters are the same as
Fig. Bd. myand my hardly affect the result again.
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Fig. 4.8 The same as Fig. EA for AL;L ]Ek interaction. m; = 400, 200 and 100 GeV, from
the left to the right, mz = 600GeV and mz = 300GeV. In this case the result depends on
m, and is almost independent of the other masses.
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Fig. 49 The same as Fig. B8 in the presence of a bilinear R-parity violating term
k;LiH, as a function of €; := x;/u. The masses and the other parameters are the same
as Fig. E8. The result is nearly independent of m, my, and the generation index i.
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Appendix 4.i Decay and Inverse Decay in Details

If we have a decay process X — AY in the early universe, then we also have its inverse
process AY — X. This “inverse decay” process usually does not realized because its
phase space is very limited, but if the particles are in a thermal bath, the thermal effects
help the process to occur.

The rates are described as
R(X — AY) = nx(Tx-av), R(AY = X) = nany{(00)ay-x), (4.48)

where 7 is the number density of the particle, v is the relative velocity between A and Y,
and ( ) denotes the thermal average.
Since we have decay and inverse decay, the time evolution of a particle is governed not

by the decay rate, but the “effective decay rate,” which we will define as follows:*

(x 5 AY)) == R(X > AY) - RAY - X)
(4.49)
= nX<rX—>AY> - nA”Y((UU)AYHX)
In this appendix, we will examine the relation between decay rates and inverse decay

rates, and then obtain the useful expression of the effective decay rate.

®The rate without thermal effects

At first, we calculate the decay rate and the crosssection of one particle without thermal
effects. The decay rate in the rest frame is described as [[4]
1
0 — 45@) (ks —ka — 2

Ty oay = rmix deAdHY(ZTC) 0% (kx —ka —ky) [Z IM| ]D p (4.50)
where M is the invariant matrix element of the process, the summation symbol denotes
sum over the final states, and dIT is the phase space integral which is defined as

d’k 1

dTi= 555 (4.51)

In a similar manner, we can write down the crosssection of the inverse decay as

0 1
o =
AY-X 2EA2EY |Z)A

. f dlTx(2m)*6 (kx — ka —kv) [ Y IMP] (4.52)

*5 In the next section (App. E1), we will use this effective decay rate in the Boltzmann equation.
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but this process does not occur without thermal effects, for the momentum conservation
severely restricts the initial states.

Note that these matrix elements are related as follows:

1 1 ,
SASY ], = = (2 IMP], (4.53)

for we shall take the sum over the final states.

¢ Momentum distribution and number density

Now let us introduce the temperature. We will consider the situation that all the particles
are in a thermal bath whose temperature is T. Then, the momentum distribution f(k) of
each particle is given by the Maxwell-Boltzman, the Fermi-Dirac or the Bose-Einstein
distribution
1 1 1

fus(k) = SE AT fee(k) = ET 1’ fro(k) = TR L (4.54)
where E is the energy, which is given by ym2 +||k|?, and m and u are the mass and
the chemical potential of the particle, respectively. The number density n of a particle is

expressed by its distribution function f and degree of freedom g as

3
n= gf g;;f(k). (4.55)

& Statistical effect on final states

To calculate the rates (B48), we have to take care of one more thing, that is, the statistical
effect on the final states. If a particle decays into a bosonic state, the decay rate is
enhanced by the Bose—Einstein statistics, while if into a fermionic state, it is suppressed
by the Fermi-Dirac one.

The decay rate at finite temperature, which includes the final state effect, is given by

1
Doy = o= | dIadITy Gagy(2m)*6 (ex = ka = k) D mP] . @se)
Here ¢ is the function of the final state effect, which is defined as
Pmp(k) =1, ¢pe(k) := 1+ fer(k), ¢ro(k) := 1 - fep(k), (4.57)

or more simply,*

d(k) = eE/T £(k). (4.58)

*6 Though seems to be non-trivial, these definitions are equivalent.
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We would mention that, when we consider the Bose-Einstein or the Fermi—Dirac distri-
bution, this thermal decay rate cannot be transformed into that in the rest frame of the
decaying particle because of the final state effects.

Similarly, we can obtain the cross section of the inverse decay at finite temperature as

L 45(4) — Tk, — ’2
SEA2Ey oA — 0] deX Ox(2m) 6™ (kx — ka — ky) [Z IM’] ]ID' (4.59)

OAY—X =

#Calculate and calculate
Now we can calculate the rates (E243):
R(X — AY)

= ﬂx<Fx—>Ay>

[ PRy

— & | np

= 8x f dITxdIT4dTTy (fxPacpy)(2m)*6® (kx — ka — ky) [Z |/\/(|2]D , (4.60)
R(AY — X)

fx - Txsay

= nAnY<(7AY—>X “oa - UY|>
~ gagy [ ATLAdTIydITy(fa i)@' k- s — k) [1 M)
= gx f dIT4dTydITx(fa fr ) 2r)*6® kx — ka = k) [ ) IMP] (4.61)

Therefore, the effective decay rate, which is defined as Eq. (B29), is

(x =2 AY)) = g f dITAdTTydITx(fx@acpy — fa frpx)
x @n)*o (x — ka — k) [ Y IMP]
= gx f dIT4dITydITx - fx fafy - EX/T [e—(qu)/T _ e—#X/T]
x 21)4 6@ (ky — ku — ky) [Z IMP] - (4.62)

From this result, we can see that this process works to reduce the imbalance between
pa + py and px, and finally achieves the equilibrium to satisfy the equality px = ua + py.
Note that this fact holds regardless of the statistics and the degree of freedom of the

particles.
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¢ Maxwell-Boltzmann approximation

Generally, these event rates are very difficult to transform into some useful expressions
analytically. However, if we approximate the statistics of X, A and Y to the Maxwell-

Boltzmann type, it can be expressed as

deAdHdeX : ffofy . eEX/T(ZR)46(4)(kX - kA - kY) [Z |M|2]D
~ elicritatin) /T f dITadTTydTTxe /T ) 6 (kex — ka — k) [ Y IMP]

— e(}lx+pA+#Y)/T deXe—Ex/T . 2er9(—>AY

T3 myx
— e(#x+HA+#Y)/T2_nQF1 (T) rg{_}AY’ (4.63)

where F;(x) is defined as
Fi(x) := x*K;i(x) (4.64)

through the modified Bessel function of the second kind K;(x). Thus

(X 2 AYY) = gy [ehs!T - elunriT] ZT_; A ()0 (4.65)

We will use this result in the next section.

Appendix 4.ii Boltzmann Equations

In the section, we will derive the Boltzmann equations which are used in this chapter,
that is, Eq. (BE14), etc.

4.11.1 BOLTZMANN EQUATION

The time evolution of the number density 1,4 of a certain particle A obeys the Boltzmann

equation. In the (expanding) universe, it is described as

d
an A +3Hna = (Interacting terms), (4.66)

where H is the Hubble parameter.
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This equation (EBH) can be easily obtained: the Hubble parameter is defined
by the scale of universe a as

a
H=- 4.67
:, (+67)

where the dot denotes the time derivative. Therefore, we can write down the
equation

% (na3) = A (the number of the particle) = a*An. (4.68)

This is equivalent to the equation.

When we consider only the part of the time evolution induced by a process X 2 AY,
that is, the decay of some particle X and its inverse process, we can write down the
Boltzmann equation with the effective decay rate, which we have defined in the last
section, as

%I’IA + 3Hny

oy = nX<rX—>AY> - nAnY<(GU)AY—>X> 4.69)

= (X s AY)).

Here we assume that X, A, and Y are all in a thermal bath, and discuss the effect of (very
weak) X 2 AY process. Using the “yield” N := 1n/T? as a variable, Eq. (E69) becomes™
d

T—N
ar 4

1
X2AY B _ﬁ«x S AY»' (4.70)

We have obtained the analytical expression of this effective decay rate in the previous
section, under the approximation that all the particles obey the Maxwell-Boltzmann

distribution. Here also we use the approximation, and use the result
X =2 AY) = ux/T _ o(pa+py)/T T3 E nix 0 4.71
« < >>—gx[e - ¢ ]2_7121 T ) x-ar (4.71)
Moreover, as the chemical potential 7 of the antiparticle is equal to —p14, the effective

rate of the processes of antiparticles are

«X =\ Y» = gx [e—yx/T _ e—(,UA-HlY)/T] %Pl (%) F())(—>AY’ (4.72)

7 We have used dT/dt = —HT, assuming for simplicity that the effective degrees of freedom g.s(T) are
constant.



54 Magisterial Thesis / Sho Iwamoto

and therefore

d
Tﬁ(NA — N;)

X2AY HT?

4.11.2 LEPTON FLAVOR VIOLATION

Here, we derive the Boltzmann equation for the LFV process in the early universe. As
an example, we consider as LFV processes those induced by the following term in the

superpotential:
Wo hz3L2E3Hd . (475)

For simplicity, we discuss only the decays and inverse decays of the higgsinos H, and
assume that all sleptons have the same mass m; (< mp).

We define the asymmetry Nj4) of a supermultiplet as, e.g. for ug,
N[,ML] = (NyL - N‘u{) + (NﬁL - NF‘L) (4.76)
Since leptons are massless before the electroweak phase transition, the asymmetry is

8w . (M7 b, —u,\l 28w Ui, —UL,
Nt = 502 () [ () o (T2 )| + 5z [0 () e (=52

1 mry . )
- Lna(Fem(2)

as we have discussed in Sec. BI3."® Also its time evolution induced by LFV processes is

described as

d _ 1 770 % 770 -~ 1
| = g @ ) (7 2 T

—(their antiparticles’ processes)] (4.78)

_ o, 2T M _HHd)_ . (‘ULZ‘“(U&)]
=-2 = HFl ( T )[smh( T sinh — )| (4.79)

where R
< G Y mp (4.80)
32n H mlzq '

*8 Qeff () := Fa(x) + 2, which is the same as Sec. BT3.
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is the partial decay rate of each process, which is the same for all four processes. Similarly,

d _ 5, 2T . _HHd)_ . (HL2+HE3)]

TdTN[V“] . 2 = HFl( T )[smh( T sinh — )| (4.81)
d _ 2 F . ‘qu . _[uLZ - luE3

TdTN[TR] ey =4 = HFl( T )[smh( . ) smh( T )] (4.82)

Now let us consider the asymmetry of each lepton flavor, which is defined as, for
example,
N2 1= Nju] + Nige + Niy,)

et (i T) 201, — g, (4.83)
B T2 T

Under the LFV interaction L,E3Hy, the time evolution of the difference N, — N3 is given
by

d d
Tﬁ(Nz - N3) = dT(N[yLl + Ny, = Nicw) (4.84)
_ EE . UH4 . M, + UE,
= HFl( T )[smh( T )+ smh(—T )] (4.85)
16 T H (qu+qu2+(u1:33]
- nZHF ( T )[ T ’ (4.86)

where we have used u < T. On the other hand, reactions mediated by the diagonal

lepton %iJ1l couplings are in thermal equilibria for T < 10°GeV, which leads to

pr, + pg, + pHy =0, (4.87)
and hence
d 16T i\ | Qur, — ue,) — Qui, — pg,)
TE(M ~Na) = ZH! (T)l 3T ' (4.88)
Therefore, from Eq. (E83) we obtain
d 16l F1\mg/T
Tﬁ(Nz ~N3) = (r/7) (N — N3). (4.89)

4.11.3 R-PARITY VIOLATION

The evolution of the B — L asymmetry under the R-parity violating interactions can be
discussed in the way similar to Sec. BEii2. In this section, we will derive the time evolution

of the B — L asymmetry under R-parity violating interactions.
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€ B - L asymmetry and chemical potentials
We define the B — L asymmetry as

NMparyon — Mlepton

NB—L = T3 (490)
Using the approximation that u < T, we can calculate this as
1
Np-1 =3 (N[Q] — Nig - N[D]) - ZZ‘ (N[LJ - N[Eil)
et (m;/T) 6ug = 3ug —Bup  Seft (Wr;/T) )y (Z[JL,- - .UE“,-)
- T2 T T2 T (4.91)
_ 8eff (m'q'/T) —4ur  Qeif (er/T) 9z + 3um,
B 72 T s T
_le o
- nz CB—L(T) T 7
where
m my
Cp_r(T) := 4geff(T) + (9 - 3CHd(T))geff (T) . (4.92)

For the definitions of Nixj, i, and Cp, (T), please go back to P.BY, Eq. (B38) and Eq. (B20),

respectively.
€ U DD interaction

If in the superpotential we have U;D;D; term, we have the following 18 (= 3 x color)

decay processes,
Fl:[-: — d]'dk, gj - Llidk, ;i;y; - uidj, (493)
and their antiparticles” processes. They are all governed by the same decay rate

1 144
rUiDjDk = ﬁlAUklzmﬁl (494)

for now quarks are still massless, and we assume that the mass of squarks are the same.

Therefore, in the presence of the superpotential

1 17 TT T T
W = A7 UD;Dy, (4.95)
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the time evolution of Np_; is given by

d 1 9%iwlapn, . (m3\ ug +2up

a7 (Np-1) — H 17 T (4.96)
— 9 mﬁ 1+ CHd(T)
=g Z I'up.p.F1 (T) (D) Np-r- (4.97)

ijk
We should emphasize that Eq. (B97) holds even in the absence of the lepton flavor

violation.

@ LLE interaction

Here we assume that the lepton flavor asymmetries vanish because of the lepton flavor
violation, that is, we use pr, = ur, = yr, in addition to Eq. (B91)). Under this assumption,

the time evolution of Np_; under the superpotential

1 _
W = E/\i]'kLz-L]-Ek (4.98)
is described as
d 1 3%iw TLLe, (1 2up + g
TarNeL=-m—pg b (T) T (4.99)
3 mT 1+ CHd(T)
=— ) I'n1eFil=|————  NsL, .
¥ X]k: weh (F) e Not (4100
where 1
ILie = El/\ijklzm[- (4.101)

€LQD interaction

Here also we assume the vanishment of lepton flavor asymmetries. The time evolution

of Np_ under the superpotential

W = A LiQiDi (4.102)
is
T Ny = - L | 2R 0 (5)+ SLilaan (5| e T o
dr Pt T2 H T o, T T
_ 1 (M m\11+ Cp,(T)
=5 Z [1F&LfQ;DkF1 (T) + 6r2LinDkF1 (F)] CB_—L(T)NB_L , (4.103)

ijk
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where

’

1 2 1 712
IGLop, = 16_n|/\ijk| g, ILop, = 16_n|/\ijk| my. (4.104)

#Bilinear R-parity violation

As we will discuss in App. B4, or as we have done in Sec. 2, the bilinear R-parity
violating term «;L;H, induces, through the L,~Hy mixings, effective trilinear couplings
Aijx and Alf].k. Then, the time evolution of B — L can be discussed by using the Boltzmann

equations of the LLE and the LQD cases, which we have just discussed.
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Chapter 5

Conclusion

Now let us conclude this thesis.

We have seen that

the R-parity is not necessary for the MSSM,

the R-parity violating parameters are constrained,

the constraints is mainly obtained from collider experiments,

cosmology would bring us to much severe constraints if the lepton flavor is violated

enough,

in this thesis. Here, we will discuss the application of the last severe constraints, which
we have obtained from cosmology, to the detection of the “SUSY without R-parity” in

colliders (LHC, etc.), and present the outlook for the future.

* * *

In the presence of slepton mixings, all the R-parity violating couplings must satisfy
Eqgs. (B24)-(BEZ2) in order to avoid the baryon erasure. Interestingly, this means that
the LSP has a long decay length at the LHC. For instance, suppose that the LSP is the
stau T, mainly consisting of the right-handed one Tr. If the LLE couplings A;j3 meet the

cosmological bounds (EZ8), the decay length of T becomes

Aig \ 7 -\l
CT;~50pm( ’3) ( s ) . (5.1)

10-6 100GeV

This is comparable to the tau-lepton decay length (c7,; =~ 87um), which can be probed at
the LHC.
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To our pleasure, this is the shortest possible decay length, and in general we can expect
a much longer one. For example, if the dominant decay of 7 is caused by Aijk (k # 3) or the
LQD coupling /\lfjk, the decay length becomes longer since the decay rate is suppressed
by the left-right mixing of 7 and/or the flavor mixing.

Also, for other LSP cases, we can obtain similar results. The dominant decay mode of
the LSP is dependent to a great extent on what the LSP is and the pattern of the R-parity
breaking. If it is three- or four-body decay [[], the decay length becomes even much
longer.

These features may be a great help for us to detect R-parity violating SUSY models,
and therefore now, in the LHC era, it is important to study the LHC phenomenology of
R-parity violating SUSY models under the cosmological bounds Eqgs. (E44)—(EZ2). We
should examine various LSP candidates and various patterns of the R-parity violating

couplings, and we leave it for future works.
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Appendix A
Standard Model

Section A.1 Notations in this Appendix

In this part of the thesis, we use following conventions.
All fermionic fields are expressed as Dirac spinors. Dirac’s gamma matrices, which

shall satisfy
oy =20 Wt yst=0, (15 =1 (A.1)

are defined as “chiral notation” like Peskin [[Z], that is,

0 ot i S -1 0
Y= (5_;[ 0); Vs = = gi€uwpoV V' Y7Y =1y°y1y2y3=(0 1), (A2)

where ¢t and 6* are extended Pauli matrices and €., is the totally antisymmetric Lorentz

tensor: ‘ ‘
ot = (1/ GZ)/ ot = (]-/ _Gl); 60123 = —€0123 = 1. (A3)

As we use Dirac spinors, not Weyl spinors, projection operators appear explicitly in

the Lagrangian. They are defined as

_1—)/5 ._1+‘)/5
=, Pri= —=. (A.4)

For the gauge group of the Standard Model, we use following notations as their repre-
sentation.
1 denotes Gell-Mann matrices, and T* is equal to 0* /2, where 0? is Pauli matrices. That

is,

SU(3)strong : [Ta, Tb] = ifabc”[c, Tr (Ta’(b) = %&zb’

SU(2)weak : [Ta, Tb] = ieabCTc, Tr (TaTb) = %6“17,
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Section A.2 Standard Model

The Standard Model is one of the greatest achievement of science in the last century. It
describes almost all physics below O(100GeV), the electroweak scale.

In this section, we introduce the Lagrangian of the Standard Model, discuss its sponta-
neous symmetry breaking from SU(2)y.eak X U(1)y to U(1)gm (the Higgs mechanism), and

write down the Lagrangian after the symmetry breaking.

A.2.1 FIRST LAGRANGIAN

The Standard Model is characterized by its gauge group and field content. The gauge
group is SU(3)strong X SU(2)weak X U(1)y, and the field content is as Table A.1. From these
two features, we can specify the model and write down the (renormalizable) Lagrangian
of the Standard Model as follows:

L= Lgauge + LHiggs + Linatter + L?%JII/ (A.5)
1 1 1
where Lgauge = — ZBWB‘W _ ZWQ,HVWZV _ ZGa‘uVGZV (A.6)

2

LHiggs = - V(H)/ (A7)

1.
(8# - igZW# — §1g1By)H

=. : : 1.
Lmatter = Qily# (ay - 1g3Gy - 1g2wy - glng‘u)PLQi

+ Uiy* (ay —igsG, — %ig1By)PRUi
+ Djip* (ay —igsG, + %ingy)PRDi (A.8)
+ Liiy* (ay —igW, + %ingy)PLLi
+ Eidy* (9, +1ig1By) PrE;,
Ly = — Ui(ya)ijHPLQ, + Di(ya)ijH PLQ; + Ei(ye)ijH'PLL; + H.c.  (A.9)

Here, V(H) is the Higgs potential, which we will discuss later. Also note that the field
strengths are defined as, e.g. for SU(2) gauge fields,

Wi, = 0, Wi — 9, W[, + ge Wi WS, (A.10)
or with a notation W := W*T",

Wy = Iy Wy = 0, W, — ig [ Wy, W, . (A11)
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Table A.1 The field content of the Standard Model: here we omit the gauge indices,
and subscripts i denote “generation indices”, which run 1-3.

SUB)strong | SU(2)weak | U(l)y
Matter Fields (Fermionic / Lorentz Spinor)
Q; : Left-handed quarks 3 2 1/6
U; : Right-handed up-type quarks 3 1 2/3
D; : Right-handed down-type quarks 3 1 -1/3
L; : Left-handed leptons 1 2 -1/2
E; : Right-handed leptons 1 1 -1
Higgs Field (Bosonic / Lorentz Scalar)
H : Higgs 1 2 1/2
Gauge Fields (Bosonic / Lorentz Vector)
G : Gluons 8 1
W : Weak bosons 1 3
B : Bboson 1 1

A.2.2 HIGGS MECHANISM

In the above discussion we did not write down the explicit form of the Higgs potential.
Now let us discuss the Higgs sector.

The (renormalizable) Higgs potential must be, in order not to violate the gauge sym-
metry, as follows: .

V(H) = -p*(H'H) + A (H'H) (A.12)

Here p? and A are arbitrary real parameters, and A > 0 in order not to run away the
vacuum expectation values (VEVs) of the Higgs. Note that this u is the only parameter
which has non-zero mass dimension in the Standard Model.

If u? were negative, the potential has a minimum at |H| = 0, and everything would be
as it was. However we set u? > 0 here. Then the potential has minima at |[H]> = p?/2A,
which means the Higgs fields have non-zero VEVs, and the symmetry SU(2)yeak X U(1)y

is broken.
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To discuss this clearly, let us redefine the Higgs field so that the VEV is

1 2
= — (S) where v = ’“’7 (A.13)
and parameterize fluctuations around the VEV as
_ 1 [ ¢rtige
H= E (v f(h+ iqbg))' (A.14)

Here h and ¢; are real scalar fields. / is known as “Higgs boson,” and ¢; are Fd#—
Goldstone bosons according to the symmetry breaking, which the weak bosons “eat” to
be massive.
The Higgs potential becomes
12

2
vy =gt B

o 7}13 + u’h?, (A.15)

and now we know the Higgs boson has acquired mass m;, = V2p.

Accordingly, the kinetic term of the Higgs fields in Ly;ges turns into

2 (v + h)?

. 1,
(8“ —igoW, - Elng#)H g

Thus, we redefine the gauge fields with taking care of the norm of fields as follows:

R L Zy\ ._ [cos O, —sin0y\(W,
Wy = ﬁ(wy FiWy), (Ay) T (sin Ow  cos Oy )(Bu ! (A-17)

where 0,, is the Weinberg angle, and e is the elementary electric charge, defined as

1
= E(ayh)2 + [822W12 +g22W22 +(g1B —g2W3)2]. (A.16)

1 182 e e
We obtain the following terms in Lgiggs:
Lriiggs D %(ayh)2 L@ ;h)z 2822 WH W, + (312 + §29)27]. (A.19)
Here we have omitted the Fdi—Goldstone bosons.
Here we present another form:
1B, =lelA, —tan 0, Z,, (A.20)
@W, = % (WeT* + W,T) + (%zy + |e|AP)T3, (A21)
where W, := W T" as is already defined, and T* = T" +iT>.
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Note that the gauge bosons acquired the following masses:

[02 + 0,2
my =0, mwy = %v my = %v. (A.22)

A.2.3 MASS OF FERMIONS

Now let us move on to the %;)Il terms. The ¥l interaction is, we writing down SU(2)-

and generation-indices,
_ ap17 a B +\¢ a T +\¢ a
Ly = —ePUi(yu)iiH PLQ; + DilYa)ij (H") PLQ? + Ei(Ye)ij (H") PLLY +H.c.

1 _ _ _
> $(v + 1) [()iiTiPLQ} + (ya)y DiPLQ? + (o) E:PLL? + H. .. (A.23)

We can see that these terms give masses to the fermions, and invoke fermion—fermion—
Higgsinteractions. However, the #%;)I| matrices are not diagonal. Here we will diagonalize
the matrices to obtain mass eigenstates.

We use the singular value decomposition method to mass matrices Y, := vy./ V2.

Generally, any matrices can be transformed with two unitary matrices W and @ as

nmq 0 0
Y=0'|0 m O0|¥=0'MY (m>0). (A.24)
0 0 ms

Using this W and @, we can rotate the basis as
Q' ViQ, P VIQY, LV, U-~®oU D-®D Ew-®E (A25)

to obtain mass eigenstates™

Then the %;)1l terms are
1 — — —
Ly = (1 + 5h) [(mu)iUiPLQ} + (mg);DiPLQ7 + (m);E:P L7 + H. c.] : (A.26)

In mass eigenstates.
In the transformation from the gauge eigenstates to the mass eigenstates, almost all the

terms in the Lagrangian are not modified. However, only the terms of quark—quark-W

“I FYI: The fields in the left hand sides of (B2H) are in gauge eigenstates, as well as those in all the equations
before (AZH). Meanwhile, in the right hand sides are in mass eigenstates.
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interactions do change drastically, as

Lo Qiy* (—igZWy - %ingu)PLQ (A.27)
— @% (W+ T + W'T‘) PLQ + (interaction terms with Z and A) (A.28)

+ t 1
S gul O oo
_ % [§2W‘XPLQ1 +§1W+X*PLQ2] +( ) (A.30)

where X := W;W! is a matrix, so-called the Cabibbo—/N%—2)I1] (CKM) matrix, which is
not diagonal, and not real, generally. These terms violate the flavor symmetry of quarks,

and even the CP-symmetry.

In our notation, CP-transformation of a spinor is described as
TP W) =-if (D), €2 (P) =0, (A31)
where 7 is a complex phase (17| = 1). Under this transformation, those terms are
transformed as, e.g.,
—2 —1
«2 (QW XPQ!) = (PQY 2(-WHXPL@ VY
—1
=-Wi'07Q)'@Q Xy P! (A.32)
=@ W'X'PLQ?).
Therefore, we can see that the CP-symmetry is maintained if and only if X' = X¥,
that is, if and only if X is a real matrix.

A.2.4 FULL LAGRANGIAN AFTER THE SYMMETRY BREAKING

After all, we obtain the following Lagrangian.

L= Lg.-int. + Lg.-mass + LHiggs + Lmatter(l) + Lmatter(Z) + L?%J I (A33)
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Lyine 1= =1 [GH/ Gl + (22) 02y + DAV QA)y + 2OW )V OW )y
ile|

tan 6,

+ i|e|[(aw+)ww;Av + OW) AW+ (8A)“VW+W‘]

lef?
2 Gw

[(@WH W, Z, + QW) Z, WS + (D2 Wi W, |

lel®

+ ("' - n”"n“’)[ —— W} Z,W, Z,

N lef?
tan 6,

WEWS WS W+

2sin” Oy, tan

(WiZ WA + WA W, Z,) + |e|2w;Avw;AU],

2
— 2iar+tita— . MZ
Lg.-mass = mw W FWP + szzp/

Lings = 2O~ T - va-;m%z

2 2 2
L WIW O+ 2 W+ S 2
v 20
( d)z ( e)i
0

ZmW

~—~D;PLQ7h +

(( ity U;PLQ}h + ~—2EPLL?h+H. c.),

Linatter(ty := Q(id + 3¢) PLQ + U (id + g3¢) PRU + D (id + g3¢) PrD
+ L (id) PLL + E (id) PRE,

Lmatter(Z) = Q W XPLQl + Q W+X+P QZ] + L \/_ (W+T+ + W T )pLL

£l

— 3
+|e|.Q[(T3+g)A+(taz6 tan Gy )ZO]PLQ

7 _
+ §|€| -U(A - Ztan0,) PRU

1 —_
—glel-D(A—ZtanGW)PRD

— 1 T3 tan 0

. 3 _ w 0
+ |e| L[(T 2)A+(tan9w+ 5 )Z]PLL
—le| - E (4 — Ztan 6,,) PRE,

Ly = (m,);U;PLQ} + (mg);DiPLQ? + (me);E;PLL? + H. c.
We have used an abridged notation

OX) = 9 Xy — X, (A.34)
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A.2.5 VALUES OF SM PARAMETERS

Here we present the experimental values of the Standard Model, taken from the “Review
of Particle Physics” [@].

B Parameters in low energy

apm = 1/137.035999679(94) Gr = 1.166367(5) x10™°GeV 2

HIn the electroweak scale

These values are all in MS scheme.

agy(mz) = 127.925(16) mw(mw) = 80.398(25)GeV
agy(m;) = 133.452(16) mz(mz) = 91.1876(21)GeV
as(mz) = 0.1176(20) sin® Oy (my) = 0.23119(14)

B Mass of fundamental particles

These are PDG value. Here we ignore the renormalization effects.

e : 0.510998910(13)MeV u:1.5to 3.3MeV d:3.5to6.0MeV
1 : 105.658367(4)MeV c:1.27°0%GeV s:10473MeV
T :1.77784(17)GeV t:171.2.71GeV b:4.20%07GeV

B Estimation of Standard Model parameters

For the electroweak scale, we can roughly estimate the values as

2
e ~0.313, g1 ~ 0.358, g2 ~ 0.651; v= \/”7 ~ 246GeV

Therefore %;)!l matrices are (after diagonalization)

107 0 0 3x107° 0 0
vy~ 0 0007 0 |, Ya & 0 0.0006 0 |,
8 2

0 0 0.0

yex| 0 00006 0
0 0 001

3x107° 0 0 ]

Also, for m, ~ 120GeV, we can estimate the parameters of the Higgs potential as u ~
85GeV and A ~ 0.12.
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Appendix B
SUSY

Section B.1 MSSM
B.1.1 GAUGE GROUP AND FIELD CONTENT

The minimal supersymmetric standard model (MSSM) [8, B, B] is the minimal supersym-

metric extension of the Standard Model. Its gauge group is

SU(3)C0101' X SU(Z)weak X U(l)Y/ (Bl)

which is the same as the Standard Model,

The field content is as Table Bl. Note that we need two Higgs fields H, and Hyg to
describe the %1l interactions, which is also good since we have no gauge anomaly with
the two Higgs doublets.

This field content leads us to the following (general) superpotential of the MSSM as

W= HHqu + (]/u)i]' HuQin + (yd)i]' HinDj + (ye)i]' HdLiEj

1 o, s (B.2)
+ KiHuLi + EAijkLiLjEk + A ijkLinDk + E/\ iijiDjDk.

Note that the terms in the second line of Eq. (B2) violate the baryon number B or the
lepton number L, while those in the first line do not. These B- or L-violating terms cause
the proton decay problem, and thus we usually impose the conservation of the R-parity

[B]. These matters are discussed in Sec. 211

We use the convention that A;; = =A% and )\;/’.k = —/\Z’.,:]., for the superpotential
(B22) has the following asymmetry:

LiL]'Ek = —L]'LiEk, UlD]Dk = —UkaD/‘. (B3)
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B.1.2 SUSY BREAKING TERMS

From the field content and the superpotential, we can write down the Lagrangian of
the MSSM*!, which respects the supersymmetry. However, this Lagrangian is not what
governs our current universe, because we know the universe is not supersymmetric. We
have electron, whose mass is 0.511eV, but do not have such light bosons. (If the universe
were supersymmetric, we had 0.511eV bosons.)

Thus we consider the supersymmetry is already broken so that the mass of super-
partners becomes much heavier. In these twenty years, various models are proposed
to achieve this feature, the SUSY-breaking (SUSY). To discuss such models is a very

interesting theme, but in this thesis we do not focus on it. Instead, we give the general

Table B.1 The field content of the MSSM: here we omit the gauge indices, and sub-
scripts i denote “generation indices”, which run 1-3.

Matter and Higgs fields (chiral multiplet)

SU@B) SU®2) U(1) spin0  spin1/2

Q| 3 2 1/6 | (d)  (ur,d)
u; 3 1 -2/3 iy uh,

D;| 3 1 1/3 d, df,

L; 1 2 -1/2 | (v,e) (v,eL)
Ei | 1 1 1 e e
Ho| 1 2 172 | (HL,H) (H,HY)
Hy| 1 2 —1/2 | (HO,H;) (HS,HY)

Gauge fields (vector multiplet)

SU@B) SU@2) U() | spinl/2 spinl

G 8 1 0 I g
W 1 3 0 W 1%
B 1 1 0 B B

I We do not present the procedure here, for it is a bit long travel. If you want to follow the way, see Ref. [B8,
Secs.3-7], etc.
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form of the SUSY effects, which appears in the Lagrangian.
The general form of SUSY terms is

Lsysy = —% (Msgg + MWW + M BB + H. c.)

- (au)z‘jHuéiEj - (ﬂd)indéid_j - (ﬂe)indziEj +H.c

L ——

(), @G + (), TL + (), T+ (), 4+ (2), 55| B

— |, HiHy + m?, HyHa + (bHyHg + H. )|

(1 == ,~~=~= 1 _, ~—== —~
— EéijkLiLjék + éijkLiQ]'dk + Eéijkuidjdk + ﬁiHuLi + H. C.] .

Here, i, j are indices for the generations, which run 1-3, and we omit the gauge indices.
Note that the terms of the last line, &’s terms and f term, also violate the B- or L-number,
and are usually omitted by imposing the R-parity conservation.

We have the following SUSY parameters:

e M; : gaugino masses.

e 1, : trilinear scalar couplings.

e m? : scalar masses, which must be Hermitian.

e b : Higgs off-diagonal mass, which is assumed to be real.
e & : B-or L-violating trilinear scalar couplings.

e 5 : L-violating bilinear scalar couplings.

Here we also use the convention

ik = —Ejiks ik = i (B.5)

Section B.2 Proton Decay and R-Parity

Now we have introduced the MSSM, but with the B- and L-violating terms left. As we
discussed in Sec. [IIT], these terms induce the proton decay problem, and usually omitted
by imposing the R-parity.

However, as is also already mentioned, we overlooked the fact that we have to consider
not only 4-dimensional operators but also higher-dimensional operators in order to realize
the current bounds of the proton lifetime. In this section we will discuss this matter, and

introduce a better symmetry, the proton hexality.
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B.2.1 HIGHER DIMENSIONAL OPERATORS AND PROTON DECAY

We considered the 4-dimensional operators in the MSSM in Sec. P71, and saw that we can
avoid proton decay with imposing the R-parity conservation. However, we should be
more careful. We must consider 5-dimensional operators too.

Let us assume that we had a 5-dimensional term which invoke proton decay in the
Lagrangian. The term is suppressed by a huge mass, e.g., the scale of the grand unification
theories (GUTs) Mgur = 10'°GeV as

Lo XXXX, (B.6)

GUT

where k is the coupling constant. Then the rate of proton decay can be roughly estimated

as

k> 5 Ik[>
r < —_— = — B.7
~ MéUT mproton 25yr ( )

therefore still we have to constrain the coupling constant as |k| < 107'°. This constraint
is still not usual, thus we have to eliminate, or at least pay attention to, the effect of
5-dimensional operators.*

In the MSSM scheme, there may be the following terms which lay down 5-dimensional

operators: o o o
QQUD,  QQQL, QQQHq4, UUDE, QULE, BS
QUHdE_"I LH,HHq4, LLH.H,, HuH.HaqHaq, ( . )
in the superpotential, and the following in the Kahler potential:
D'UE, D'QQ, L'QU, HIQU,
(B.9)

H'QD, H'LE, H'H4E, L'Hj.

(And their Hermitian conjugates, surely.)

They can be classified as follows:

Both Pg- and Py -violating: QQQL and UUDE,
only Pg-violating: QQQH4 and D'QQ,
only Py -violating: QUH4E, LH,H,H4, D'UE, LYQU, HIH4E and L'Hy,

and neither Pg- nor P; -violating ones.

*2 To use the Planck scale My, instead of Mgy is not a remedy. Also we can see from this discussion that

6-dimensional operators, which is suppressed by M? is not so critical.

GUT’
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Here, Pg := (—1)°F is the baryon parity, and Py, := (—1)* is the lepton parity.
In particular, the four Pg-violating terms are critical, because the proton decay owes to
them, as we mentioned in Sec. 1. Now we would like to see how the above Pg-violating

operators invoke proton decay.

In the following estimation, we use as the mass scales

MGUT = 1016G6V, nsysy = 103GeV. (B.lO)

€0Q0QQL and UUDE terms

The terms Q;Q;QxL; and U;U;DyE;, where i, j, k and I are the generation indices, violate
not only B (Pg) but also L (P1). Note that these terms do respect the R-parity, and thus we
cannot omit these terms by imposing the R-parity conservation.

Here, we cannot choose the generation indices arbitrarily for the asymmetry of the
gauge indices. For U;U;DiE;, we have to choose them so that i # j. For Q;Q;QkL,, if we
select the SU(2)weak indices (2 and b, where a # b) as Q! Q? QZL;’, we have to satisfy i # k.

Ones of the main channels of the proton decay processes are described in Fig. B1. The

decay rate can be roughly estimated as

a-k/MgurF s Ik
I ~|—————| ‘m = — B.11
QQOL Msyusy proton 5.4 ><1010yr ( )
u - u u - u
— t —
u S, ///r—<—_ SL u UR //r_>—— UR
.- I 4
2. $ X - $ X
)\ ,-:\ ~
v 4 a4 erR i S
d vtood ey

Fig. B.1 Channels of the proton decay induced by QQQL (left) and UUDE (right)
terms. The star % in the UUDE case denotes the CKM mixing, which we have to use
to convert from the charm quark to the up quark. x denotes the neutralinos.
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and the experimental bounds are [(]
7(p — K*v) > 6.7 x10%yr. (B.12)

Thus we need an unnatural constraint, [k| < 107!}, for the QQQL coupling. For the UUDE
coupling the constraint is a bit relaxed because of the CKM mixing, but still unnatural.

Therefore, it is favorable to introduce a symmetry to forbid these terms.

* * *

These 5-dimensional operators are, since they are naturally present in SU(5) GUTs, well
studied. The decay rate for QQQL is more precisely calculated [BZ, B8] as

2

(m2r0 on ms )2 Mproton
I(p > K')) = 3; ‘ : }(2 ﬁC(l + I:nt (D + P)) : (B.13)
m B
proton/ 7t

fr in this equation is the pion decay constant ~ 139MeV. C is the coupling constant which

is defined through the 6-dimensional effective operator O(sudv) as
LD C-O(sudv). (B.14)

udd

p is a parameter related to the hadron matrix element <O proton> which ranges

B = (0.003-0.03)GeV". (B.15)

The latter part in the big bracket of Eq. (BI3) expresses the effects of the Quantum Chromo
Dynamics in the Standard Model, and in the references D = 0.81 and F = 0.44 are used as
the values. mgp is typical light baryon mass ~ 1150MeV.

Anyway, in our language the coupling constant is

k 1

C~ , B.16
Mcur msusy (B.16)
and therefore we obtain
T = 1.9 x10Pyr ( Mgur msusy )2 0.003GeV? 2 (B.17)
B k2 1016GeV 103GeV B ’ '

which roughly meets our estimate and yields a constraint k| < 107%°.

€ 0O0Q0H, term

This term QQQH4 violates only B, thus we need a source of L-violation. Here, we

introduce the bilinear term H,L; as an example:

k

W = (ue;))H,L; +
(ue)HuLi Mcur

QQQHg. (B.18)
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As we will explain in Appendix B3, when the superpotential includes the bilinear
term, the sneutrino obtains a vacuum expectation value (VEV), and the value can be

approximated as

1
Vi) ~ @61‘7) cos f, (B.19)
Therefore one of the main Feynman diagrams is as Fig. B2, whose decay rate is
- ark Mg €;0cos ff 1 ? .
Maur  vcos B/ V2 V2 msusy| "
Wk ey —1 2 m
CIMgur T msusy| PR
2 -2 -2

__ lkedl ( Msusy ) ( Mgur ) (B.20)

2.0 x10Myr \103GeV 1016GeV

Here m; is the mass of the strange quark. We can see that the experimental constraint is
roughly |ke;| < 10711
The constraint from this term is weaker than those of the previous two interactions

because here we need an L-violating term.

€D'Q0 term

The term D'QQ is similar to the 4-dimensional UDD term. One of the processes is as

Fig. B3, where we use

f d62d6? D'QQ > f d6?d0? (V205 ) ( V20yq) (100" 03up) (B.21)

term, and a LQD term as a source of L-violation. The decay rate is estimated as

2 .5

~ k- mproton , m}:;roton _ |k/\/|jz ’ (B22)
Mgur Mgy 33 X10%2yr
while the experimental bounds are [[]
7(p — K*v) > 6.7 x10%yr, (p — ) > 2.5 x10%yr. (B.23)

Therefore the constraint is
kA’| < 10719, (B.24)
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u - u
— +
u SL —— SR
/} e
0
- Hy
AN
J HCl < v
7 |

Fig. B.2 One of the main channels of the proton decay induced by QQQH,4. Here we
use the sneutrino VEV.

u - u
u dfl.s'l”
di;st
-_—— .<.__ -—
d v

Fig. B.3 One of the main channels of the proton decay induced by D'QQ. The
intermediate particle in this diagram must be left-handed.
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Section B.3 R-Parity Violation and Other Symmetries

So far, we saw that we have the following B-violating interactions, and they are very

harmful to the proton decay problem:

NITTTT kl k2 TS k3
W > A”0UD + L+ QOaDE + Hg, B.25
Meor QQQ Meor Meor QQOH4 (B.25)
K> —_proo. (B.26)
Mgur

To solve the proton decay problem, usually we impose the R-parity conservation on
the MSSM. However, even if we do so, QQQL and UUDE terms cannot be omitted. Thus

if we want to omit all these terms, we must find another symmetry.

B.3.1 DISCRETE GAUGE SYMMETRY

Here, we should mention quantum gravitational effects on the symmetries. It is said that
any global symmetries are violated by those effect, for example virtual blackhole exchange
and wormhole tunneling. Thus all the global symmetries we impose on the MSSM (or
other effective theories) must be a remnant of a gauge symmetry. [BY]

Consider a U(1) gauge theory with two scalar fields n and & carrying charge Ne and
e, respectively, and 7 is much heavier than £. Here, if 1 is condensed at some high
energy scale, that is, acquires VEV, then its low-energy effective theory is only the theory
with &, and it respects a global Zy symmetry & — exp(2mi/N)<E as a consequence of the
original gauge invariance. Discrete symmetries of this type are called “discrete gauge
symmetries.” Discrete gauge symmetries are protected from the quantum gravity effects.

However, gauge symmetries must satisfy anomaly cancellation conditions. We can
regard a global symmetry as a discrete gauge symmetry if and only if there is an anomaly-
free gauge symmetry from which the global symmetry is obtained.

Here note that the high energy theory might have another particle whose mass is
very heavy and thus already integrated out. Therefore, the gauge symmetry need not
be anomaly-free only with the low-energy particles. In other words, we can add some

heavy particles so that the gauge symmetry should be anomaly-free.
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For example, the R-parity is anomalous only with the MSSM particles (See: [ET,
Sec.22.4]), but adding the right-handed neutrino N makes it anomaly-free. An
example of the anomaly-free charge assignments is as follows.

QL |U|D|E|H |Hs| N
1[-3|-5[3|7]4|-4]-1

Here, though we do not prove, we are free to shift all these values by kY, where k

is an arbitral coefficient and Y is the hypercharge of the particle.

Ibafiez and Ross studied this “discrete gauge anomaly”[E]. They assume that all the
massive fermions, which is added in order that the gauge symmetry be anomaly-free,
have integer Zn charges*3, and under this assumption, they proved [EJ] that, among
Z, and Z3 symmetries, only two symmetries are anomaly-free. One is the standard Z,
R-parity Ry, and the other is “baryon triality” Bs.

Dreiner, Luhn, and Thormeier extended this result to arbitrary Zy symmetries, and
propose a new symmetry “proton-hexality” Pe [[], which is anomaly-free without in-
cluding fractionally charged heavy particles. Also Luhn and Thormeier [E3] studied
about the symmetries which is suitable to the MSSM+N (right-handed neutrino) model
and their GUT-compatibility, and proposed other several symmetries.

We write down the charge assignments of the symmetries at Tab. B2, and allowed
terms of the MSSM at Tab. B3, as references.

B.3.2 OTHER WAYS BUT R-PARITY

Forget about the matters of high-energy theories, and concentrate on the low-energy
effective theory. What can we say about the MSSM superpotential?

You can see that we have three ways. (Here, Pg and Py, are the baryon and the lepton
parity as we have introduced.)
(i) R-parity conserving case The first way is to impose a symmetry which forbids both Pg-
and P; -violating terms, e.g., Ps. In this case the LSP is still stable, and the (renormalizable)

superpotential is
W = Wrpe := uH Hqg + yuiiHo QiU + yaijHaQiD; + yeijH4LiE;. (B.27)

(if) R-parity violation in lepton sector The second way is to forbid only Pg-violating terms
with, for example, the baryon triality B3. Then the LSP cannot be a candidate of the dark

3 Adding fractionally charged heavy particles will generally relax the anomaly cancellation conditions.



Chapter B SUSY 79

matter, but proton would not decay. The superpotential is
1 _ , -
W = Wgpc + x;HyL; + E/\ijkLiLjEk + A ijkLinDk- (B.28)

(iii) R-parity violation in baryon sector The last way is to use the lepton triality L3 etc. to
forbid only Pp -violating terms, with imposing another condition that the LSP is heavier
than proton. The LSP cannot be a dark matter candidate, and the proton decay would

not occur as we discussed in App. ZT3. The superpotential is

1 o
W = Wgpc + EAI,ijkuiD]‘Dk. (B.29)

We refer the first way as “R-parity conserving case” or “SUSY with R-parity,” and the
other two ways as “R-parity violating case” or “SUSY without R-parity,” although the

symmetry we do or do not impose is not the R-parity.

The fact that the LSP is stable under Pg- and P;-conservation needs some
explanation.

First consider the interactions induced from the superpotential. Note that the
operators which induced by the same term in the superpotential have the same R-
parity. Since the conservation of both Py and Py, the superfields means the R-parity
conservation in the superfields, the LSP would not decay via the superpotential
interaction in this case.

How about the gauge interactions? Supersymmetric gauge interactions are
obtained by “supersymmetrizing” an even number of fields in a gauge interaction
operator. Since this operation does not change the R-parity, the gauge interactions
never violate the R-parity as long as the gauge boson is even in the R-parity.
However, now Pg and P| are conserved, and therefore gauge bosons must be
R-even. Therefore the LSP would not decay via the gauge interactions in this
case.
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Table B.2 The charge assignments to the MSSM particles (and right-handed neutrino
N) of discrete gauge symmetries. Among these symmetries, the R-parity Ry, the
baryon triality B; [E2] and the proton hexality P [[[], are anomaly-free without adding
fractionally charged heavy particles. The other symmetries are Luhn and Tohrmeier’s
work [E3].

typel Q| L |U|D|E|H, | Hi| N

R, Z (1|11 1]1(1] 0 01
B3 Zz 10212121 210
P¢ Zg O |41 |5 1] 5 113
B, Z, {1101 1]1(0]| O 0160

L, Z, 101,001 O 011

Ls Zz; 102,001 O 011
M; Zz; {0121 (0] 1 211
Rs3 Zz; 10|02 (1|11 212
ze12)| ze o451 ]3] 1] 5]1
7302 ze o 4|3 [3]5] 3] 3]s

Table B.3 Allowed interaction of the MSSM with a discrete symmetry.

disastrous harmful not good L-violating

E | QQQH4 | D'QQ | LH, | LQD | LLE

apb | QoL | aa
R, v v

B3 v v v

&
«\
&
&

Z(102)

Z6(302)
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Appendix B.i Higgs Mechanism under R-Parity
Violation

If the R-parity is not conserved, the superpotential and the SUSY terms of the MSSM are
extended, and the Higgs Mechanism is modified. Especially the violation is in the lepton
sector, we cannot distinguish the down-type Higgs from the leptons because we have no

“lepton number.” In this appendix we discuss these matters [[T].

B.I.1 HIGGS POTENTIAL
First, we put the Higgs superfield and the lepton supertfields into a vector
Ly = (Lo, L) := (Hg, L) (B.30)
(Greek letters to run 1-4, and Latin letters 1-3.) The superpotential is described as
_ 1 _ _
W = yui]-HuQiu]‘ + HaHuLa + EyaﬁjLaLﬁEj +y aijLaQin' (B.31)
where V.5 = —Ypaj, and the SUSY part is now
Lsusy = (Gaugino mass term) — [(au)ijﬁiéjHu - amﬁi@ﬁa —-a, ]%}Z]Ia + H. c.]
2\ 0 2\ 77 2\ 77 2\ 354 2 Epr
B [(mQ)ij Q; Qf + (mU)ij Ul + (mD)ij didf + (mE)i]‘ eiej + mHuHuHu] (B.32)
- (mi)aﬁfjjﬁ - [ﬁaHufa + H. c.] .

Here note especially that p, = (uo, ti) = (4, ).

The classical scalar potential for the Higgs bosons is now
Viiiggs = (Ital® +m3; ) (IHSP + [HSP)
+ (), (@53 + 727,) + vl + uazal + 42 |Yapivacs|
+ [Ba (Hi2w — HO) + H. c |

S (i« - i - o)

2 — ——p
0
|H37; +Hge,| — E Vaep — eavﬁ| },

a<p

(B.33)

gz
+_
8

which is very complicated. Here, as usual, not to break the electromagnetic symmetry,
we redefine the up-type Higgs field so that (H}) = 0. This is the rotation of SU(2)eak-
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The VEV-condition
< ;I_IVJr> =0 (B.34)
I (H =0
yields
<(,Ba ; %@Hﬂ*)@ —0, ie, (&)=0, (B.35)

from which we see that the electromagnetic symmetry does not break up. Thus we obtain

Vinges = (Iual” +my ) HOP + (m?) 727, + | tava|”
(B.36)

2 + 2 2
~ [BoH + Hoc ]+ % (|H8|2 - |va|2) .
Here, as usual, we can set 8, > 0 by redefining the phases of L,.

B.I.2 MASS MATRICES AND ALIGNMENT

This discussion is along Ref. [E4].
Now the fields which may have VEVs are H? and ,. Define the VEVs of those fields

as
<H8> =:7,, (v,) =:0,. (B.37)
Then the mass matrices of the neutralino and the chargino sector are
]' T T
Lo [_E (o) "Mty — () M- | + H. c. (B.38)
My +2My es(Mp—M;) 0 0 0 v
cs(My —My) My + M, -gu, Q0o Ui Zz
My = 0 -guy 0  —p —xi|, vo:=[HO[; (B.39)
0 g0 -u 0 0 Yo
0 ?Ui —K; 0 0 V;
M, gvo/ V2 gui/ V2 VE W-
Mc = | gv,/ V2 L K , Yei=[HY[, ¥-=|e |,
0 (Yakjox  —(Ya)ijvo + Aikjvx eki €j
(B.40)

where g := g2/2 cos Oy, ¢ := cos Ow and s := sin Oy.

Here, two eigenvalues of My are zero, and five are non-zero. This means we have

two massless “neutralinos” and five massive ones after the EWPT. Note that these five

massive higgsinos contains one neutrino, which is nearly massless.
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The product of the masses can be calculated as
H mY = (2M; +$*My) (g [[u] ol sin 5)2 (B.41)
i=1..5
where
-0

 llien

Here, we can expect that M; ~ M, ~ ||y|| ~ 100GeV, and thus the mass of one massive

Y= Ua, V=0, cos & (B.42)

neutrino can be approximated as
m, ~ (100GeV) - sin® &, (B.43)

That is, we can expect that £ is very small, or in other words, u and v are nearly aligned.

* * *

When we assume x; < 1, we can obtain the following expressions of VEVs:

<H3> = %v -sin B, <Hg> ~ %ZJ -cosf, (vi) = —% . %v - cos B, (B.44)

where v = 246GeV is the Standard Model Higgs VEV (See: Sec. A 27), and g, the well-
known value of the MSSM, is defined as

(H)
(Ho)
We used this basis in the decay rate approximation of the QQQHq4 proton decay in
Sec. B2l

tanp = (B.45)

B.I.3 CONDITIONS FOR ALIGNMENT

As the end of this appendix, let us discuss the conditions on the parameters for the
alignment. To this end, we take the basis where x; = 0. If the alignhment is realized, v;
must vanish in this basis.

In this basis, the Higgs potential would be

: ) (B.46)
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Here, as usual, we can rotate the fields so that v, > 0 and v; > 0, and express them as
v, =0vsin 0, vg =vcos0. (B.47)

(We use 0 instead of the usual 5.) The VEV-conditions are expressed as

@2+ 0P
lul? + m?, )sin 6 — By cos O — ——="-1%cos20sin O = 0, (B.48)
(u Hy 4

24 52
[(|M|2 + (mi)ool cos O — Bysin O + S 782 2 0s208in0 = 0, (B.49)
(m%)io cos O — B;sin0 = 0. (B.50)

Therefore, the conditions for the alignment are expressed as

20ul + iy + (mi)o0 = siii;@, (B.51)
g ' 827 5 _ L(md)y + 0] COS;QS ;@[m?f + | sin? o (B.52)
(m2),y _ () _ (),

B, = 5, = B, =tan 0 (B.53)

in this basis. Here, the first and the second conditions are the same ones of the R-parity

conserving MSSM, and what is important is the last one.
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Appendix C

Cosmology

In this thesis, we discussed cosmological constraints on the R-parity violating parameters.
In the discussion, we have used the fact that this universe is expanding, where the
expansion rate is given by the Hubble parameter. Now, for the sake of completeness, we

will obtain the Hubble expansion rate in this appendix.

Section C.1 The Expanding Universe
C.1.1 UNDERLYING STRUCTURE

We, the human being, live in this universe. We know that this universe is spatially
homogeneous and isotropic. Or more precisely speaking, this universe is macroscopi-
cally homogeneous and isotropic as far as we know. This is so-called “Cosmological
3]

Principle.

Under this axiom, the spacetime metric g;; of the universe is restricted as follows, the
Friedmann

“®puaman—Lemaitre—-Robertson—Walker (FLRW) metric:”

ds? := uvdxtdx” (C.1)
K (x - dx)?
:dtz—at2[dx2+— C.2
(1) [lldxl| — KJalP (C2)
342 2 d_’”z 2 2 2. A2
=i —a(t)? | - 7 (d6? +sin? 0~ dg?) |, (C.3)

where t is the time coordinate, x and (r, 0, ¢) are the Cartesian and the polar coordinates

for the (3-dimensional) space, a is a time-dependent parameter, which is called the scale

*1 Steven Weinberg mentioned [E3] that this principle is valid only for “typical observers,” those who move
with the average velocity of typical galaxies in their respective neighborhoods. This is true surely.
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factor, and K denotes the curvature of the space,

K >0 fora closed universe (+1 for spherical),
K =0 fora flat universe, (C.4)

K <0 for an open universe (-1 for hyperspherical).

Under this metric, the Einstein equation is calculated as
a\y K _8nG i 4 K
(E) + a_2 = TTO(), 8ij E + a_2 + a_2 = 87TGT1] (C5)

The definition of the Einstein equation and the detail procedure of this calculation is
given in Appendix (.
Recent observations proved that the universe is extremely flat. Therefore we set K =0

from now.

C.1.2 ENERGY-MOMENTUM TENSOR

The axiom that the universe is spatially isotropic and homogeneous also leads us an
approximation that the substance of the universe can be approximated as the perfect
fluid. The perfect fluid is a fluid that has no viscosity and no heat conduction. Its

energy-momentum tensor T*, is
THV = dlag(P/ —P, =P, _p) (C6)

Thus the Einstein equation is now

2

i\ 8nG i a
(2] = =52e0, 2+ 5 =-8nG - plt), €7)
and therefore
a 8nG i 8nG
o= 3 Pl =T (p+3p). (C.8)

The energy density p(t) and the pressure p(t) depend on the property of the substance.
Let us calculate these values.

To discuss the energy density and the pressure, we first introduce the well-known mo-
mentum distributions, the Fermi—Dirac (FD), the Bose-Einstein (BE), and the Maxwell-

Boltzmann (MB) ones:

1 1 1
Fa(k) =~ foelk) = <o 17 feolk) = o 1 (C9)
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where E := /||k|]* + m? is the energy of the particle. k, u and m denote the momentum, the
chemical potential, and the mass of the particle, and T is the temperature of the universe.
When a particle is in a thermal bath, its energy density p, pressure p, and number

density n, are given by

d’k d3k k d3k
p=s [ @t p=g [ ST =g [ S5rw, (€10

where f(k) depends on the statistics of the particle.

C.1.3 HuBBLE PARAMETER
¢ Massless approximation

Now, almost all have been done. We know that the Hubble parameter is given only
by the energy density p ((C4), and p can be calculated by the above expression. Thus,
theoretically, we can obtain the Hubble parameter at any temperature.

However, actually, this calculation cannot be done analytically in general, and we
cannot obtain the analytical expression of the Hubble parameter, which we want to use
in the Boltzmann equations. Therefore, here we come down to do an approximation,
m<T.

If we use the approximation m < T, which means that all the particles are nearly
massless, or the temperature is extremely high, we can continue the calculation analyt-
ically. Especially, if we can approximate y is small enough, i.e., u < T, we expand the

expression to the 1st order of u to obtain the following result:

2 3((3) 1 @) 1
BE _ T4 U . BE _ 1 BE BE _ 8|2 L 25 11
p g [30 + TCZ [’l]’ p 3p 4 n g [ nz + 6(“ 4 (C )
7% 9((3) _ 1 3C(3) mw?_
D _ 4| /T FD _ L FD FD _ 73 ™
pr=gl [240 Rveen s D A U e T L
where i := u/T.

Now we can calculate the Hubble parameter, which is defined as

a |8nG

The particle which we have and their degrees of freedom are presented in Tab. C1.*2 As

*2 Also in the table the mood of the mass are presented. “Massive” denotes around 100GeV, and “heavy”
denotes 300-1000GeV, which describe only the mood, or the tendency.
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Boson | Fermion | D.o.F g
Q HEAVY 0 36
u HEAVY 0 18
D HEAVY 0 18
L,E | massive 0 12+6
H,, Hy | massive 0 4+4
g 0 HEAVY 16
W 0 massive
B 0 massive

Table C.1 The mood of mass, and the degree of freedom, of the MSSM particles.

you can see, the energy density and the pressure is calculated as

7
1="1i(1224 7 122) C.14
S (C14)
7
=" (12247 122) C.15
pD) = 5T (1224 5 - (C15)
under this massless approximation.
Finally, we obtain the Hubble parameter
T2 \/ 8 2 7
H=¢&— h =\ 5= 122 1 25.1. 1
‘M, Vhere £= 43y +8) > (C.16)

(Note that the Planck mass is defined as Mp := G™/2) We used this value, which is

approximated to be constant for simplicity in calculation, in Chap. B.

Also the second order differential of the scale factor is obtained as

4

ii . T
PR Vo)
pl

where &' :=

& General result

81 2 7 3
?E 122(1 §)~1.26><10.

(C.17)

Here, we will try to obtain the Hubble parameter without the approximation m <« T. We

present numerical results here.

As we can still use the approximation u < T, or fi < 1, we expand the values as, for

example the energy density p of a boson,

pF(m, i) =

po. () + fipy* (i) + O({?),

(C.18)
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where 1 is defined as: m := m/T, as we did in . We put the numerical result of the energy
density p of a massive boson, and fermion, in Fig. C1 and Fig. (3, respectively. Also
the pressures in Fig. (C3, and the number densities in Fig. C4. For the energy density,
the approximation seems to be still good for m < T, and for the pressure and the number
density, it is good for only m < T/3.

As we presented in Tab. (1], we have

massless:  ghoson =24,  Sfermion = 98
massive: Tboson = 26, fermion = 8
heaVy: gboson = 72/ gfermion = 16
particles. Then, assuming that the “massive” particles are all m = 100GeV, and “"HEAVY”

particles are m = 600GeV, and estimating the energy density of the massive particles from

Figs. C1land T2, we can approximate

p(T = IOOGGV) X Z [(g : P)massless + (g . P)massive + (g : p)heavy] (C19)
BE, FD

° 7 2
~ LT 24 426-09+72-01]+ 2 T*[98 +8-09+16-0.1], (C.20)

30 8 30

and finally,
TZ

H(100GeV) ~ 20 - — . (C.21)

Here we have ignored fi.
This result tells us that our massless approximation is not so bad even when T =

100GeV, our lowest temperature under consideration.

4 0ne more note

So far, we have not consider the complexity that the particle might get out of the thermal
bath. When the temperature falls down so that the mass becomes not negligible, the
creation processes become less frequent, and meanwhile, when the particle becomes very
dilute due to the expansion of the universe, the pair annihilation processes also less
frequent. These effects make the distribution of the particle different from the original
(MB, BE or FD) one, and eventually the particles can travel freely.

If we would like to discuss the expansion (the value of 4) precisely, surely we had
to include these effects. However in this thesis (the main part of thesis: Chap. B and
Chap. @), we have ignored these effects in the calculation of the Hubble parameter for

simplicity.
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Fig.C.1 The functions pP(i%1) normalized by the massless result p;(0), which describe
the energy density of a massive boson. The blue line is pJ(i71)/ pg=(0), and the red line
is pP(1m)/ pPE(0). See Eq. (CIB) for the definition.
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Fig. C.2 The same as Fig. (T, but for a massive fermion.
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Fig. C.3 The pressures, the same as Fig. (1 and Fig. . The upper figure is for a
massive boson, and the lower is for fermion. The blue lines for the Oth order (p,), and
the red lines for the 1st order (p;).



92 Magisterial Thesis / Sho Iwamoto

N/ Nmasdess

O‘H‘l‘w‘2””3””4””5””6

mass/ Temperature
1.0¢
0.8-
@
0.6+
:
— 04+
c
0.2-
0 1 2 3 4 5 6
mass/ Temperature

Fig. C.4 The number densities, the same as Fig. C3.
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Appendix C.i Metric and Einstein Equation

In this appendix, we introduce the valuables which we use to express the curvature of
the space, calculate their values in under ®punman—Lemaitre-Robertson-Walker metric,

and introduce the Einstein equation.

C.1.1 THE VALUABLES

When we want to express the curvature of the space, we usually use several valuables
which are derived from metric. At first, we give the definitions of the valuables [E5, BS,
7).

o Christoffel symbol (affine connection)

1 d d )
a . 0B -
P = 28 (8xvgﬁ“  oxn 8B 8xl3gw)' (C22)
e Riemann curvature tensor
R%,, = —a r _(9 r« r*,,I° r«,r° C.23
pur 1= 5y = 5 ST+ Toul gy = Ty gy (C.23)

e Ricci curvature tensor and Ricci curvature scalar
Ruv = R“WV, R := g“VRW. (C.24)

e Finstein tensor 1
G#v = Ruv - ERgW' (C.25)

As the metric is symmetric, i.e., gy = gy, these valuables also have the following

features related to the (anti-)symmetricity:

Fayv = Favp/ Raﬁyv = _Rﬁayv = _Raﬁvy = Ryvaﬁ/ Ryv = Rvy~ (C.26)

*3 Weinberg [ES] uses different definitions. He use RL‘LS = —Rf,}}rs as the Ricdi tensor, thus his Einstein

equation is RES — 7 ¢,, ¢ Rgli;s = —8nTyy.
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C.1.2 VALUES UNDER FLRW METRIC

The FLRW metric is, under our time-respecting notation 1 = diag(1, -1, -1, —1), given by

Kxix; ) (C.27)

=1, i =8io=0, i = —a(t)* (6 + ————
200 80i = 8io &ij ()(11 1— K|l

From this metric, we can obtain the Christoffel symbol, the Ricci curvature tensor, and

the Ricci scalar as follows:

a a K

FOZ']' = _Egij’ rioj = E(S;, ri]‘k = —a—zxigjk, (Others) = O, (C28)
3ii i 24> 2K
Rop = ——, Roi = Rip =0, Rij=- (E tt a—z)gij/ (C.29)
i a> K
2 K 2i a* K
Goo = 3(61_2 + 12_2), Goi = Gijp =0, Gi]' = (7 + (1_2 + a—z)g,] (C.31)

For your information, we give the values in the space-respecting notation n =
diag(-1,1,1,1). In this notation the FLRW metric is modified as

le-x]- )

=-1, i =gio =0, q=at)? |6 + ———
800 80i = 8io 8ij ()(1 K|l

and the results are




Chapter C Cosmology 95

C.1.3 EINSTEIN EQUATION

The Einstein equation is the equation which describes the gravitational interactions. It is

expressed by the energy-momentum tensor T}, and the Einstein tensor G, as
G = 8nGTy,, (C.32)
where G is the gravitational constant.
Sometimes a term with the cosmological constant A is inserted to the Einstein
equation, as

Gy = 8TGTy + A (C.33)

Then the result ((C8) which we have obtained under the perfect fluid approxima-
tion is modified as

a 8nG A K i 4G A

Meanwhile, if we add the “dark energy” as a substance which satisfy ppg(t) =
—ppE(t), the Einstein equation is modified as

8nG K i 4nG

8nG
o= \/T (p + poE) — oy Pl —T(P+3P)+ —3 PDE (C.35)

Therefore inserting the cosmological constant is equivalent to introducing the
dark energy.

Actually it is known that the universe is accelerated, or 4 > 0, therefore we need
the dark energy, and it is known that 70% of the whole energy of the universe is
the dark energy. [B]
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