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ABSTRACT
We physicists are on a journey towards the ultimate theory which describes everything in
our Universe. A great milestone achieved in 2012 is the discovery of the Higgs boson by the
CMS and the ATLAS collaborations at the Large Hadron Collider (LHC); it completes the
Standard Model of particle physics, which was developed through the mid to late twenties
century.

The long twentieth century was over. Happily making a steppingstone of the Standard
Model, we are now heading to more fundamental theories. Nature has many unsolved
features: the Dark Matter, the Dark Energy, and the mechanism which produced current
baryon asymmetry of our Universe, etc. Also we have to build a unified explanation of
the three forces embedded in the Standard Model, and to develop a description of the
gravitational force in the language of the quantum theories.

The supersymmetry is one of the most promising candidates for theories beyond the Stan-
dard Model, and its tail was expected to be caught at the early stage of the LHC. However,
our expectation was not fulfilled, and we have no footprints observed yet. What does this
mean?

* * *

The current status of the supersymmetric theories is described in this dissertation. First,
the simplest model of supersymmetric Standard Model is introduced, which is called the
MSSM. Under this framework, the discrepancy in the muon anomalous magnetic moment
between the prediction from the Standard Model and the experimental result suggests the
supersymmetric particles are of order 100 GeV, which is also supported by discussions on
the little hierarchy problem. However, the LHC experiments have found no scalar-quarks
or gluinos in such mass range, and moreover, the Higgs boson mass of 126 GeV requires,
within the MSSM framework, the scalar-top mass of order 1–10 TeV. This current status
forces us to abandon the simplest supersymmetry-breaking frameworks of the CMSSM
and the GMSB scenarios.

Two promising possibilities remain there: the first is that the scalar-quarks and the gluino
are much heavier than of order 100 GeV while the other SUSY particles remain near the
order, and the second is to extend the MSSM with extra fields. The second scenario is
investigated in this dissertation; the V-MSSM is proposed as an extension of the MSSM
with a (10 + 10) pair of the SU(5) decuplets. In the framework the Higgs mass is increased
by effect from the extra matters, and thus the 126 GeV is achieved with the scalar-top having
a lighter mass. This fact resurrects the CMSSM and the GMSB scenarios. This dissertation
examines the GMSB scenario under the V-MSSM; it is called V-GMSB scenario.

It is shown that the V-GMSB has a potential to realize the 126 GeV mass of the Higgs boson
with holding the explanation of the muon magnetic moment discrepancy, if the masses of
the extra quarks are approximately less than 1.2 TeV. Constraints on the V-GMSB from
the LHC experiments are discussed then; it is concluded that the gluino mass must be
approximately heavier than 1.1 TeV, and that the extra quarks be heavier than 300–650 GeV
depending on the decay branches of them.

LHC prospects are briefly discussed. As the extra quarks are expected to be approximately
less than 1.2 TeV, searches for the particles are of great interest at the 14 TeV LHC; con-
straints from the supersymmetry search, especially on the gluino mass, are expected to be
much improved there. Therefore, it is expected that the fate of the V-GMSB is adjudicated
at the court of the 14 TeV LHC.
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概要
2012年，ついに Higgs粒子が発見されました。この発見は，巨大加速器 LHCで行われ

ている ATLAS実験・CMS実験によって達成されました。2012年 7月 4日，両グループは
この発見を世界に向けて発表しました。Higgs粒子の発見は物理学者の悲願でした。この粒
子は，標準模型という，この自然をよく記述してくれる優れた理論の要だからです。標準
模型はこの発見によってようやく完成を迎えました。提唱から既に 40年の歳月が流れてい
ました。

物理学者たちの一つの夢は，この宇宙の・この時空の全てを書き表す究極理論を作り上
げることです。標準模型はその重要な中間地点ですが，究極にはまだほど遠いものです。た
とえば，標準模型は分子やニュートリノなどの『物質』の振る舞いを見事に説明します。し
かし，宇宙の 96%は，『物質』ではない，我々の知らない暗黒物質・暗黒エネルギーと呼ば
れる何かで出来ています。そもそも，標準模型が完全に正しければ，この宇宙に『物質』は
存在しません。どうして宇宙に銀河や星があるのか，その根元は全く分かっていないので
す。また，標準模型には 3つの力—電磁気力，弱い力，強い力—が含まれています。物
理学者たちは，これら 3つの力を統一的に記述する『大統一理論』を作りたい，という野
望も抱いています。

そのような野望のために「標準模型の次の理論」が引き続き探求されています。そして
その最有力候補が，超対称性 (supersymmetry, SUSY)の存在を仮定した理論，『超対称理論』
です。この博士論文には，超対称理論の現状が，特に Higgs粒子の発見を受けてどうなった
のかを中心にして，記述されています。

まず，最もシンプルな “MSSM”を考えます。すると，標準模型の持っている諸問題，た
とえば「階層性問題」「µ粒子の異常磁気能率が予言値からずれていること」「3つの力の大
きさが大統一理論からの予言と微妙に食い違っていること」などが一挙に解決され，さら
に暗黒物質の正体も説明することが出来ます。

ところが，ここで Higgs粒子の質量mhが 126 GeVだったことがポイントとなります。標
準模型では mh は他の量とはあまり関係の無い，実験によって決定される単なるパラメータ
でした。しかし，MSSMでは mhは SUSY粒子の質量と密接に結びついており，特に mhが
126 GeVくらいであるなら，t̃（超トップ）の質量 mt̃ は 1–10 TeVである必要があります。
実は，この mt̃ は，物理学者が期待していたよりも，若干大きい値です。Higgs粒子の発見
によって，t̃を始めとする『SUSY粒子』は想定よりも若干重そうだとわかったのです。

SUSY粒子が重いのは，あまり幸福なことではありません。LHCでの SUSY粒子の発見
が難しくなったり，µ粒子の異常磁気能率のずれを説明することが困難になったりするから
です。特にこの論文では後者に着目しました。MSSMの枠内で，Higgs粒子を 126 GeVに
保ちながら µ粒子の異常磁気能率のずれを説明するのは，あまり容易ではないのです。

そこでこの博士論文では，MSSMを拡張します。MSSMに 12種の粒子を追加した新し
い模型 “V-MSSM”を考えます。V-MSSMでは，新しく追加した粒子も mh を持ち上げてく
れるので，SUSY粒子の質量を軽くすることが出来ます。その結果，mh = 126 GeVの制限
の下でも，µ粒子の異常磁気能率のずれをあっさりと実現することが出来るのです。

さらに，V-MSSM模型に対する LHCからの実験的制限についても議論しています。µ粒
子の異常磁気能率のずれを説明するには，g̃（グルイーノ）という粒子が軽いほうが嬉しい
のですが，この粒子が LHC実験でまだ見つかってないので，V-MSSM模型は厳しく制限
されます。V-MSSMで新しく追加した t′1 と呼ばれるクォークもまだ見つかっていません。
これも強い制限になります。

V-MSSM模型は mh = 126 GeVの制限下でも µ粒子の異常磁気能率のずれを説明できる
優れた理論だが，LHC実験が目覚ましい進展を遂げているので，近いうちにその真偽に決
着が着きそうだ。これが，この博士論文の主文です。

ここでは平易さを優先したため，やや不正確な表現もあります。より正確・詳細な説明については，前ページ
にある英語版 Abstractをご覧下さい。
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Chapter 1

Overture

A new boson is observed in Higgs hunting. The magisterial thesis of Author, submitted in January 2010,
begins with the following paragraph:

We have the Standard Model, which describes almost all physics below the energy scale
100 GeV. Although it is still under verification, especially the existence of the Higgs boson,
the experiments held in the Large Hadron Collider (LHC) will work out the answer soon,
which will be a declaration of the triumph of our philosophy.

This prognostication became reality. On 4th July 2012, the ATLAS and the CMS collaborations claimed that
they respectively observed a new boson with a mass approximately 126 GeV in searches for the Standard
Model Higgs boson [1, 2]. It is not confirmed that the new particle is the Higgs boson; we have to measure
its property precisely, especially the Yukawa couplings with the Standard Model particles. Nonetheless, it
allows us to expect that the Standard Model with the Higgs mechanism [3, 4] will be validated with the LHC
and the International Linear Collider (ILC) in the near future.

In this dissertation, we assume that the new particle is the Higgs boson, and discuss the Standard Model
with the Higgs mechanism, simply we call it the Standard Model hereafter, and higher-energy theories above
it.

Standard Model has been completed, but. . . The discovery of the Higgs boson has completed the Stan-
dard Model. This model has the electroweak symmetry breaking as its heart, which is governed by the Higgs
mechanism, and explains almost all of Nature.

We physicists, however, expect that more fundamental theories are hidden at higher energy scale Mhigh,
and hope that they solve the following prospects or problems:

(a) unification of the electroweak force and the strong force (“grand unification”),

(b) description of the gravitational force in harmony with the electroweak and strong forces,

(c) the reason why neutrinos have such extremely tiny masses,

(d) the mechanism which generated current baryon asymmetry of our Universe,

(e) the mechanism which caused the inflation in the early universe,

(f) identification of the Dark Matter and the Dark Energy,

but these are so fundamental that cannot be solved in a night. Towards these problems physicists have
examined the Standard Model, and have found the following problems, discrepancy, or unnaturalness, which
can be used as keys towards more fundamental theories:

〈〈problem〉〉 Dark Matter problem We know that our familiar matters, e.g., electrons, protons, and
neutrons, account for approximately 4% of the substance of our Universe [5, 6]. We consider that
approximately 20% is some other matter, called “Dark Matter,” and that the rest is not even matter,
which we call “Dark Energy.” We do not know nature of them; as for the Dark Matter, since it is still
considered to be “matter,” expected to be ascertained more easily.
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〈〈problem〉〉 current baryon asymmetry of our Universe Although the baryon number B is slightly
violated with the sphaleron effect [7, 8, 9], the violation is too feeble to explain current baryon asym-
metry of our Universe.

〈〈unnaturalness〉〉 fine-tuning problem (hierarchy problem) Based on our current understanding of
quantum field theory, the mass of the Higgs boson, mh, should naturally be much above O(100) GeV,
but we found it is just around 126 GeV. This means that Nature employs unbelievably unnatural
tuning. This topic is examined in Sec. 2.1.2.

〈〈discrepancy〉〉 muon g − 2 problem The anomalous magnetic moment of muons, or the muon g−2,
is precisely measured in experiments, but the measured value has 3σ-level discrepancy compared with
the theoretical prediction under the Standard Model, as will be discussed in Sec. 2.2.

〈〈discrepancy〉〉 slight mismatch on gauge coupling unification Physicists expect the three forces,
the electromagnetic force, the weak force, and the strong force, would be unified in more fundamental
theories. If so, the strength of these forces, expressed in terms of gauge coupling constants, should be
common at the energy scale of such theories. Actually the coupling constants are dependent on energy
scale, and the matching does roughly occur at ∼ 1016 GeV. However, there lies a slight mismatch, and
we have to modify the energy dependence slightly in order to realize complete unification. We will
discuss this topic in Sec. 2.3.

The SUSY and the MSSM

Amazingly, we have a silver bullet. With examining those hints, physicists invented the supersymmetry
(SUSY) [10] several decades ago.

The SUSY is a symmetry between bosons and fermions: it transforms bosons into fermions, and vice
versa. The SUSY extends the Standard Model. The minimal version of the supersymmetric Standard Model,
the minimal supersymmetric standard model (MSSM) [11, 12, 13] has, therefore, scalar quarks (squarks) and
scalar leptons (sleptons) as the bosonic partners of the Standard Model fermions. Also the Higgs boson and
the gauge bosons meet their fermionic partners called Higgsino and gauginos. Chapter 4 of this dissertation
is devoted to topics around the MSSM.

The MSSM completely solves the fine-tuning problem. It also has capability to provide a candidate for
the Dark Matter, and to solve the muon g − 2 problem. Also the slight mismatch of the gauge couplings
is resolved. Moreover, the SUSY is considered as a key to build string theories, which are considered as
promising candidates for the ultimate theory.*1

However, there ain’t no such thing as a free lunch. The great MSSM has still many problems. The
principal one is the fact that the SUSY is not realized in Nature. We do not have scalar electrons with
a mass of 0.511 MeV. We thus consider the SUSY is violated so that the masses of the superpartners
become much heavier. This is realized with appending extra terms that do not respect supersymmetry to the
(supersymmetric) Lagrangian of the MSSM. Then this patch causes CP- and flavor problems, and another
patch, called the R-parity, is required to make protons stable. Another weak point of this model is that no
evidence has been found at experiments, although the LHC is expected to observe such signals. It is nothing
but a hypothesis, or a daydream, at this stage. These problems, and solution candidates, are discussed in
Chapter 4.

*1A too philosophical (and not scientific) note:
It is instructive that a symmetry between bosons and fermions solves the hierarchy problem. The hierarchy problem ultimately

originates the fact that a scalar boson, the Higgs field, is appended to the Standard Model, where all matters are fermionic and all forces
are governed by vector bosons, in order to realize the electroweak symmetry breaking. It is somewhat expedient that the electroweak
symmetry breaking, the heart of the Standard Model, is realized by a strange, and lastly appended, particle, and we had to worry why
we have a sole scalar particle, a muggle, in the theory of fermions.

The history of physics is characterized as the cycle of unifications, from that of motions of apples and the moon to that of the
SU(2)weak and the U(1)Y gauge symmetry (in other words, that of the W± bosons, the Z boson, and the photon). Therefore, the
principal problem of the Standard Model, in this historical and philosophical viewpoint, is the co-existence of bosonic and fermionic
matters. The Standard Model should be, “historically,” supersymmetric, and it is one important reason that I, Author of this dissertation,
prefer the SUSY as the model beyond the Standard Model.
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About this dissertation

We in this dissertation will see how the status of this SUSY daydream is altered by the discovery of the
Higgs boson.

After discussing the problems related to the Standard Model in the next chapter, we will review the
MSSM and our current understanding on it in Chapter 4. The Higgs mechanism and the mass of the Higgs
boson under the MSSM, and the mechanism to solve the muon g−2 problem, are examined there, and current
status of LHC SUSY searches is reviewed. We will then notice that the mass of the Higgs boson, 126 GeV,
is a bit heavier than natural expectations, and that the Higgs boson now requires the squark to have masses
of O(1–10) TeV. This fact forces us to abandon the SUSY solution to the muon g − 2 problem as long as we
adopt the most simple and neat set-up, called the gauge-mediated SUSY-breaking (GMSB) framework.

To revitalize the GMSB framework, in Chapter 5, we extend the MSSM with extra particles. This
model, called the V-MSSM, is the main topic of this dissertation. In the model the extra quarks yield extra
contributions to the Higgs mass, and the 126 GeV is realized with the squarks having a mass of . 1 TeV.
Such lighter masses of the SUSY particles allow the SUSY contribution to the muon g−2 to be large enough
to explain the discrepancy even under the GMSB scenario. We call this the V-GMSB scenario.*2

Chapter 5 is the main chapter of this dissertation. There phenomenology of the V-MSSM is discussed.
We start from the discussion on the Higgs boson mass, on the gauge coupling unification, and on the muon
g − 2, under the V-MSSM. Then the V-GMSB scenario is introduced in Sec. 5.3. The characteristics of the
model are examined, and the vacuum stability bound enters the discussion as a very severe constraint on
the V-GMSB scenario. However, even under the bound, as can be seen quantitatively in Sec. 5.5, the Higgs
mass of 126 GeV can be explained with holding the explanation of the muon g − 2 discrepancy. Here the
GMSB is revitalized. Finally, interpreting reports from the LHC experiments, we will obtain current collider
constraints on the model in Sec. 5.6 and Sec. 5.7. Especially, Fig. 5.7 is the conclusive figure of our tour.

Chapter 6 is the coda, where the main theme of this dissertation is recapitulated.

*2The same discussion can be applied to the CMSSM framework; that is, in the CMSSM framework the muon g− 2 anomaly cannot
be solved under the 126 GeV Higgs constraint [14], and extending to the V-MSSM resolves this conflict [15, 16].
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Chapter 2

Foundation

This chapter is a review of the problems stated in Chapter 1 of the Standard Model. We will in Sec. 2.1
start from the Standard Model and review the electroweak symmetry breaking. The Standard Model is
now completed with the discovery of the Higgs boson, but we will see it has a strange problem, “hierarchy
problem,” once we regard the Standard Model as a low-energy effective theory of more fundamental theories.
This is the main topic of this chapter. Then in Sec. 2.2 we review the muon g − 2 problem, a discrepancy
in the muon anomalous magnetic moment between the Standard Model prediction and the measured value.
Sec. 2.3 is a discussion towards the grand unification theories (GUTs), where we will see a slight mismatch in
unification of the gauge coupling constants. These problems are all solved with the supersymmetry (SUSY)
in Chapter 4.

Section 2.1 The Standard Model and Hierarchy Problem

2.1.1 The Standard Model

The Standard Model [3] is a model of the gauge theory. It has a gauge symmetry of GSM = U(1)Y ×

SU(2)weak × SU(3)strong. The symmetries appear in Nature as “forces,” which in language of the quantum
field theory are governed by gauge bosons: a B-boson for U(1)Y , three W-bosons for SU(2)weak, eight gluons
for SU(3)strong.

However, Nature does not have U(1)Y × SU(2)weak; this symmetry, called the electroweak symmetry, is
spontaneously broken with the Higgs mechanism [4], discussed below, and falls into a U(1) electromagnetic
symmetry, which governs the electromagnetic force with the photon γ. The remnant yields the weak force
with the W±-bosons and the Z-boson. This is the kernel of the Standard Model, the electroweak symmetry
breaking.

Let us start from the Standard Model Lagrangian of our triumph.

L = Lgauge +LHiggs +Lmatter +LYukawa; (2.1)

Lgauge = − 1
4 BµνBµν − 1

2 Tr(WµνWµν) − 1
2 Tr(GµνGµν), (2.2)

LHiggs =
∣∣∣∣(∂µ − ig2Wµ −

1
2 igY Bµ

)
H

∣∣∣∣2 − V(H), (2.3)

Lmatter = Qiiγ
µ
(
∂µ − ig3Gµ − ig2Wµ −

1
6 igY Bµ

)
PLQi

+ U iiγµ
(
∂µ − ig3Gµ −

2
3 igY Bµ

)
PRUi + Diiγµ

(
∂µ − ig3Gµ + 1

3 igY Bµ
)

PRDi

+ Liiγµ
(
∂µ − ig2Wµ + 1

2 igY Bµ
)

PLLi + Eiiγµ
(
∂µ + igY Bµ

)
PREi,

(2.4)

LYukawa = U i(yu)i jHPLQ j − Di(yd)i jH†PLQ j − Ei(ye)i jH†PLL j + H.c.; (2.5)

V(H) =
1
2
λ|H|4 − µ2|H|2. (2.6)
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Bµ, Wµ and Gµ are the gauge fields, and their “field strengths” ∂µXν − ∂νXµ − igX[Xµ, Xν] are denoted as Xµν.
H is the Standard Model Higgs field, and the Higgs potential V(H) is characterized by the quartic coupling
λ and the quadratic coupling µ, where µ is the only parameter with mass dimension in the Standard Model.
yu,d,e are matrices of the Yukawa couplings in the Standard Model*1; i and j are generation indices of quarks
(Q, U and D) and leptons (L and E). PL and PR are the well-known projection operators. This Lagrangian
describes Nature very well, and exceptions are limited to be, e.g., the tiny neutrino masses and the Dark
Matter.

Here one should notice that the baryon number B and the lepton number L are respectively
conserved in this Lagrangian; this is an accidental symmetry originating in the Standard Model
gauge symmetry. Actually these symmetries are anomalous, and quantum effect causes especially
in the early universe the so-called “sphaleron process,” which violates B + L significantly [7, 8, 9].
Meanwhile, the conservation of the number B − L is not anomalous, and thus it is kept even under
quantum effect.

Our main concern is the Higgs potential. For a successful electroweak symmetry breaking λ > 0 and
µ2 > 0 must hold. Then the minimum of the Higgs potential falls in |H| = µ/

√
λ =: v, which results in the

vacuum expectation value v of the Higgs boson; the value is well-known to be v ≈ 174 GeV from the masses
of the W- and Z-bosons. Finally, the Higgs field is parameterized as

H(x) =

(
H+(x)
H0(x)

)
=

(
0
v

)
+

1
√

2

(
φ1(x) + iφ2(x)
h(x) + iφ3(x)

)
. (2.7)

h(x) is the (Standard Model) Higgs boson, which we first observed in 2012. φi(x) are would-be Nambu–
Goldstone bosons, ignored here for simplicity. The potential is now

V(h) =
λ

8
h4 +

√
λ

2
µh3 + µ2h2 + constant. (2.8)

What we observed in this year 2012 is nothing but mh =
√

2µ ≈ 126 GeV, and this results in λ ≈ 0.26. Now
we know all the parameters in the Standard Model. The Standard Model is completed.

The electroweak symmetry breaking makes the three W-bosons massive, which are observed as W±-
bosons and a Z-boson. This effect emerges from LHiggs as, with ignoring the Nambu–Goldstone bosons,

LHiggs =
∣∣∣∣(∂µ − ig2Wµ −

1
2 igY Bµ

)
H

∣∣∣∣2 ⊃ 1
2

(∂µh)2 +
v2

2

(
g2

2W+µW−µ +
gZ

2

2
ZµZµ

)
. (2.9)

Here redefinition of the gauge field is employed as

W±µ :=
1
√

2
(W1

µ ∓ iW2
µ),

(
Zµ
Aµ

)
:=

(
cos θw − sin θw
sin θw cos θw

) (
W3
µ

Bµ

)
, (2.10)

where

e := −
gYg2√
gY

2 + g2
2

; gZ :=
√
gY

2 + g2
2; gY =

|e|
cos θw

= gZ sin θw, g2 =
|e|

sin θw
= gZ cos θw. (2.11)

We can find the mass of the gauge bosons as

mW =
g2
√

2
v, mZ =

gZ
√

2
v, (2.12)

where we can obtain the value of v ≈ 174 GeV.

*1We will later use Yu,d,e for the Yukawa couplings in the MSSM.
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Figure 2.1: The one-loop level diagrams which give quadratic quantum corrections to the mass of the
Higgs boson, provided by (A) a Dirac fermion ψ and (B) a scalar boson φ. The particles are assumed to be
coupled to the Higgs boson h with interactions khψψ and ks|h|2|φ|2, respectively, where k and ks are coupling
constants.

2.1.2 Hierarchy problem
The Standard Model with the Higgs mechanism is a complete beautiful theory for its own sake. However,
we physicists do not consider the Standard Model as the ultimate theory, but a low-energy effective theory
of more fundamental theories hidden at higher energy scales, which we label Mhigh. Once we take this
standpoint, which is the current paradigm of our science, the Higgs particle brings an unnaturalness into the
Standard Model, which has been discussed for several decades, the hierarchy problem [17]. Let us briefly
review the unnaturalness through the electroweak symmetry breaking in the Standard Model.

The mass of the Standard Model Higgs boson receives quadratic quantum corrections from the diagrams
in Fig. 2.1. The contributions are respectively evaluated as, at one-loop level,

∆m2
h = −

|k|2

8π2 M2
high + O(log Mhigh) (2.13)

from a fermion (Fig. 2.1.A), and

∆m2
h =

ks

16π2 M2
high + O(log Mhigh) (2.14)

from a scalar boson (Fig. 2.1.B). The Standard Model has a top quark with k ∼ 1, but no scalars other than
the Higgs boson itself. ∆m2

h is thus of order M2
high, and we need a finely tuned cancellation in the right hand

side of the formula
m2

h
(
physical

)
= m2

h (bare) + ∆m2
h (2.15)

to realize m2
h ∼ 104 GeV2.

How should we settle this unnaturalness? One possibility is to assume that Mhigh is near 100 GeV, and
that our quantum field theory cannot be applied above this scale. Then the tuning is not so fine, and moreover,
we need not care quantum corrections at any higher scales.

A more beautiful solution is provided by the supersymmetry (SUSY) [10]. The SUSY, a symmetry
between fermions and bosons, supplies two scalar bosons for a respective Dirac fermion. In other words,
a Weyl fermion is accompanied by a complex scalar field under the SUSY, and vise versa. Moreover, the
SUSY guarantees that the scalar partners φ1,2 for a Dirac fermion ψ that has a coupling k to the Higgs boson
do couple to the Higgs boson with the exact coupling ks = |k|2. Therefore, the “superpartners” cancel the
quadratic divergence as

∆m2
h = −

|k|2

8π2 M2
high + 2 ×

ks

16π2 Mhigh + O(log Mhigh){ O(log Mhigh). (2.16)

We will discuss this powerful hypothesis in Chapter 4.
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Section 2.2 The Muon g − 2

2.2.1 Foundation
The g-value of the magnetic moment is one of the most famous and long investigated quantities in frontier
of physics. It is defined as a ratio between the spin magnetic dipole moment µspin and the spin vector S of a
particle as

µspin = qgµBS where µB :=
|e|
2m

, (2.17)

and expressed as a term in the Hamiltonian H as

H ⊃ −µspin · B = −(qgµB)S · B, (2.18)

where m is the mass, and q|e| is the electric charge, of the particle.
The g-value for electrons and muons, ge and gµ, are predicted as ge = gµ = 2 under the quantum

mechanics. However, radiative corrections shift the values slightly. The shift is known as the anomalous
magnetic moment g − 2, or a := (g − 2)/2.

Historically, the discrepancy was known through the observations of Landé g-factor gJ of atoms. In
1947, Schwinger calculated the one-loop level QED contribution to the electron magnetic moment as ae =

α/2π = 0.00116 [18], where α ≈ 1/137 is the fine structure constant at the low-energy scale. Then, in
1948, Kusch and Foley precisely measured the difference as ae = 0.00119 with comparing the gJ values of
gallium, indium and sodium [19].

Currently the most precise measurements are achieved by the Harvard group for the electron at the sub-
ppb level [20], and by the muon g − 2 collaboration at Brookhaven National Laboratory for the muon at the
sub-ppm level. Theoretical calculations at similar precision are achieved, as exemplified by the five-loop
level calculation for the QED contributions. The values are summarized as

ae(exp) = (11 596 521.8073 ± 0.0028) ×10−10 (0.24 ppb) [20], (2.19)

ae(SM) = (11 596 521.8178 ± 0.0077) ×10−10 (0.67 ppb) [21], (2.20)

aµ(exp) = (11 659 208.9 ± 6.3) ×10−10 (0.54 ppm) [22, 23], (2.21)

aµ(SM) = (11 659 182.8 ± 4.9) ×10−10 (0.42 ppm) [24, 25, 26, 27, 28], (2.22)

and the discrepancies between experiment and theory are

ae(exp − SM) = (−1.06 ± 0.82) ×10−12 (1.3σ-level), (2.23)

aµ(exp − SM) = (26.1 ± 8.0) ×10−10 (3.3σ-level). (2.24)

The Standard Model predicts the experimental values very well, but there exists 3σ-level discrepancy in the
muon g − 2. This is the muon g − 2 problem.

Now let us see the muon g − 2 prediction under the Standard Model in detail. The g-factor of the muon
magnetic moment is expressed in the QFT language as

g = 2 [F1(0) + F2(0)] , (2.25)

where Fi(q2) are the form factors of the µ–µ–γ vertex function Γµ, which is described in Fig. 2.2.A:

Γµ(p′, p) = γµF1(q2) +
iσµνqν

2m
F2(q2). (2.26)

(See, e.g., Ref. [29] for a review.)
At the tree level F1(0) = 1 and F2(0) = 0, and thus g = 2. Quantum corrections modify these factors, but

since the correction to F1(q2) is sunk into the renormalization of e, the muon anomalous magnetic moment
can be expressed as

aµ = F2(0). (2.27)
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γ

(B1)
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γ
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Figure 2.2: (A) The Feynman diagram which contributes to the g-factor of the muon magnetic moment. The
tree level diagram corresponds to the classical result gµ = 2, and quantum corrections, i.e., loop diagrams,
yield deviation from 2. p, p′ and q = p′ − p are momenta of the particles. (B1) The hadronic vacuum-
polarization contributions to the muon g − 2. (B2) The hadronic light-by-light contributions to the muon
g − 2. The gray circles denote hadronic loop diagrams.

2.2.2 Standard Model evaluation on the muon g − 2
The Standard Model prediction of the muon g − 2 is summarized as:

aµ(QED) = (11 658 471.8951 ± 0.0080) ×10−10 [24], (2.28)

aµ(EW) = ( 15.4 ± 0.2 ) ×10−10 [25, 26], (2.29)

aµ(HVP-LO) = ( 692.3 ± 4.2 ) ×10−10 [30], (2.30)

( 694.91 ± 4.27 ) ×10−10 [27], (2.31)

aµ(HVP-HO) = − ( 9.84 ± 0.07 ) ×10−10 [27], (2.32)

aµ(HLbL) = ( 10.5 ± 2.6 ) ×10−10 [28], (2.33)

( 11.6 ± 4.0 ) ×10−10 [31, 32]. (2.34)

For the “HVP-LO” and the “HLbL” contributions two values are cited as a reference.
The respective categories are defined as follows:

QED contribution comes from the diagrams only with leptons and photons. It is calculated analytically
up to the three-loop level (of order α3), and recently an automated computation of the Feynman di-
agrams finished its five-loop level (of order α5) calculation [21, 24]. The uncertainty of the QED
contribution, dominated by the uncertainty in measurement of α, is much smaller than those of the
other contributions.

Electroweak contribution is from the diagrams with Higgs, W and/or Z boson but without gluons. The
contribution is evaluated at the two-loop level with including leading log three-loop effects [25, 26]. A
hadronic loop uncertainty of ±0.1×10−10, and an uncertainty of ±0.2×10−10 from the “then-unknown”
Higgs boson mass are considered, but the latter corresponds to the mass range of 114 GeV . mh .
250 GeV allowed in those days, and thus is considered to be improved.

Hadronic contribution is that including QCD interaction. This contribution is separated into two types:
the diagrams of Fig. 2.2.B1, called the hadronic vacuum polarization (HVP) contribution, and those
of Figs. 2.2.B2, the hadronic light-by-light (HLbL) contribution. The lowest order contribution of the
HVP, or HVP-LO, enters at the order α2, while higher order contributions (HVP-HO) are of order α3

as well as the HLbL.

The HVP contributions cannot be calculated directly, and are evaluated through the dispersion relation
using experimental data of the cross sections σ0

tot (e+e− → γ∗ → hadrons). Due to limited accuracy
of those data, the hadronic contributions are the dominant source of the uncertainty of the muon
g − 2 prediction; especially there lies a disagreement among experimental data for the 2π-channel
region. Several results from different collaborations are currently available [27, 30, 33], two among
which [27, 30] are quoted as a reference.
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The evaluation via the dispersion relation is simply summarized as the following equation:

aµ(HVP-LO) =
1

4π3

∫ ∞

m2
π

ds σ0
tot

(
e+e− → γ∗ → hadrons

)
K(s), (2.35)

where K(s) is a kernel function (See, e.g., Ref. [34]). Note that σ0
tot is evaluated with final

state radiations but without initial state radiations and vacuum polarization corrections.

The HLbL contributions cannot be calculated directly, nor be evaluated with experimental data. Lattice
calculations [35] are expected, but currently low-energy effective theories [28, 31, 32] are exploited.

Summing up all the above contributions, we obtain the Standard Model expectation. For example, if we
combine the values from Refs. [24, 25, 26, 27, 28] with errors in quadrature, the muon g − 2 is predicted as

aµ(SM) = (11 659 182.8 ± 4.9) ×10−10, (2.36)

and we face a 3σ-level discrepancy.

* * *

Several models have been invented to solve the muon g− 2 anomaly. The SUSY can be a solution again,
where the superpartners, heavy but having ordinary couplings to muons, yield loop level contributions to shift
the predicted value. Another candidate is a hidden photon [36, 37], an extra U(1) gauge boson with a feeble
mixing with the photon. In this case, the mixing is as small as 10−4, but if the mass of the hidden photon is
of order 100 MeV, the theoretical value of the muon g−2 is shifted enough to match the experimental result.
This model is out of scope of this dissertation; we will concentrate on the SUSY, and see how the SUSY
solves the muon g − 2 problem in Sec. 4.3.

Section 2.3 Slight Mismatch of the Gauge Coupling Constants
As is mentioned when we discussed the hierarchy problem in Sec. 2.1, the Standard Model is considered
as a low-energy effective theory of more fundamental theories, where we expect that some features of the
Standard Model are “unified” with beautiful and sophisticated manners. An example is the grand unification,
the unification of the three forces.

Several models are proposed to realize the grand unification, and the most famous ones are the SU(5)
grand unification theories (SU(5)-GUTs) [38]. Since the SU(5) gauge group includes GSM as a subgroup,
this scenario is very promising, and has been studied for several decades. SU(5)-GUTs have only one force
of SU(5). Let us call the gauge coupling g5. The gauge group is expected (and assumed) to confront
spontaneous symmetry breaking and to break down into three forces at a scale higher than O(100) GeV:
SU(3) with a gauge coupling gSU(3) = g5, SU(2) with gSU(2) = g5, and U(1) with gU(1) =

√
3/5g5.

Here we face one problem. Our three forces do not have the strengths of (gs, g2, gY ) = (g5, g5,
√

3/5g5),
but instead ∼ (1.2, 0.65, 0.36) at the electroweak symmetry breaking scale mZ . Fortunately, however, the
gauge couplings depend on the scale. The dependence is embedded in the renormalization group equations
(RGEs) of the gauge coupling. In the MS scheme [39], the RGEs are given as [40]

dg1

d log Q
=

1
16π2

(41
10
g3

1

)
+

1
(16π2)2

(
199
50

g2
1 +

27
10
g2

2 +
44
5
g2

3 −
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10
y2

t −
1
2
y2

b −
3
2
y2
τ

)
g3

1, (2.37)

dg2

d log Q
=

1
16π2

(
−

19
6
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)
+

1
(16π2)2

(
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10
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1 +
35
6
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2 + 12g2
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3
2
y2
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y2

b −
1
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2, (2.38)

dg3

d log Q
=

1
16π2

(
−7g3

3

)
+

1
(16π2)2

(
11
10
g2

1 +
9
2
g2

2 − 26g2
3 − 2y2

t − 2y2
b

)
g3

3, (2.39)

at the two-loop level, where Q is an energy scale of evaluation and we have defined

(g3, g2, g1) :=

gs, g2,

√
5
3
gY

 . (2.40)
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Figure 2.3: The renormalization group evolution of the gauge coupling constants g3, g2 and g1 (black lines,
from top to bottom) under the Standard Model, together with the evolution of yt (red line). Evaluation is done
at the two-loop level for the gauge couplings. The Yukawa couplings entering the evaluation are evolved
with the one-loop level RGEs. Several remarks on this figure are documented in Appendix 4.B.

Using these RGEs together with one-loop level RGEs for the Yukawa couplings, which are given as

dyt

d log Q
=

1
16π2

(
−

17
20
g2

1 −
9
4
g2

2 − 8g2
3 +

9
2
y2

t +
3
2
y2

b + y2
τ

)
yt, (2.41)

dyb

d log Q
=

1
16π2
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−

1
4
g2

1 −
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4
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3 +
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y2

t +
9
2
y2

b + y2
τ

)
yb, (2.42)

dyτ
d log Q

=
1

16π2

(
−

9
4
g2

1 −
9
4
g2

2 + 3y2
t + 3y2

b +
5
2
y2
τ

)
yτ, (2.43)

we can evaluate the values of the gauge couplings at any energy scales.
The result is shown in Fig. 2.3. The couplings approach to each other, and gather closely at Q ∼

1015 GeV, but complete matching is not achieved; there is a slight mismatch of the gauge coupling con-
stants.

How can we settle this situation? First we must keep in mind that SU(5)-breaking effect might change
the runnings near 1015 GeV. Since all what we need is just a slight shift, we can optimistically hope that the
gauge coupling unification is realized with help from the effect, called “threshold corrections.”

Another solution is, again, the SUSY. Since the SUSY introduces many fields, the renormalization group
running is modified. We here postpone the discussion in Sec. 4.4, where we will see the SUSY performs
fabulous miracle.

Section 2.4 Concluding Remarks
In this chapter, the Standard Model and related issues are introduced. We saw the hierarchy problem in
Sec. 2.1, the muon g − 2 problem in Sec. 2.2, and the unification problem in Sec. 2.3.

Miraculously the SUSY can solve these three problems. We have now enough reasons to believe Nature
adopts the SUSY. However, on the contrary, we have no signature of the SUSY although it was optimistically
expected to be found at the Large Hadron Collider. We have indirect evidences but no direct evidences. How
should we understand this, somewhat strange, situation?

Jurists have the principle of “   ”. We scientists respect a similar principle; experimental
evidence is the most important for the theory, and any beautiful theories could not win their validity without
signatures in experiments. The SUSY is, therefore, just a hypothesis yet.



12 Dissertation / Sho Iwamoto

Then, what we can do now is to fully utilize the LHC to determine whether the SUSY exists or not, and
therefore what is important is to examine LHC SUSY searches without optimism and to invent more efficient
way to detect the SUSY. From this viewpoint, the next chapter is dedicated to an overview of the ATLAS
detector, one of the experiments at the LHC. The SUSY comes on the discussion after this excursion.
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Chapter 3

The ATLAS Experiment

The ATLAS experiment [41, 42] is a general-purpose detector for the Large Hadron Collider (LHC). With
utilizing the detector, the ATLAS collaboration recorded a great milestone of the Higgs discovery in July
2012 [2] together with the CMS collaboration [1]. They have also searched for signatures from models
beyond the Standard Model such as the supersymmetry (SUSY).

In Chapter 5 we will apply a result of a SUSY search from the ATLAS experiment with detailed dis-
cussion on the ATLAS detector, such as consideration of lepton detection efficiency. In preparation for the
discussion we here briefly review the detector instrument and how physical objects (such as electrons and
muons) are detected.

The CMS detector [43] is the other general-purpose detector for the LHC. Its apparatuses are slightly
different, but basic ideas of design and general strategy for the object detection are similar to those of the
ATLAS detector. Therefore, although we simply concentrate on the ATLAS detector in this dissertation, the
discussions can to a considerable degree be applied to the CMS detector.

Section 3.1 Overview

3.1.1 Coordinates
For later convenience the definition of coordinates in the ATLAS detector is documented at first.

The ATLAS collaboration uses a right-handed coordinate system with the origin at the nominal collision
point. From the collision point the x-axis directs the center of the LHC ring, y-axis points upwards, and
z-axis is defined along the beam axis. Spherical coordinates (r, θ, φ) is defined as usual: r :=

√
x2 + y2 + z2,

cos θ := z/r, and tan φ := y/x. The pseudorapidity η is defined as η := − log tan(θ/2). The transverse
direction corresponds η = 0, while η = ±∞ point the beam direction.

Momenta and energies in the detector are usually expressed as “transverse momenta” pT and “transverse
energies” ET, which is defined as pT = (px, py, 0), pT =

∥∥∥pT

∥∥∥ = p sin θ and ET = E sin θ. Angular distances
are often expressed in terms of ∆R :=

√
(∆η)2 + (∆φ)2.

3.1.2 Detector
The ATLAS detector [41] consists of three apparatuses: trackers, calorimeters, and muon spectrometer (MS).
Fig. 3.1 provides an overview of the detector system, where we can find the trackers at the very center, the
calorimeters as the brown apparatus surrounding the trackers and the gray surrounding the brown, and the
MS as the outermost part. In the figure magnets are also drawn, which provide strong magnetic field in the
ATLAS detector. A simplified cartoon is shown in Fig. 3.2 for a better understanding.

The trackers, or the inner detectors (ID), are the innermost apparatus surrounding the LHC beam pipe
cylindrically. Charged particles flying through the detectors provide many hits, where actually they ionize
detector materials, on the layers of the trackers, and the hits are reconstructed as charged tracks. The ID
itself has also layered structure; from inner to outer, the pixel detector, the semiconductor tracker (SCT), and
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Figure 3.1: An overview of the ATLAS detector and its subdetectors. The innermost layer is the tracker,
which is composed by the pixel detector, the semiconductor tracker (SCT), and the transition radiation
tracker (TRT). The calorimeters surround the tracker, and the muon chambers (MS) is installed in the outer-
most sector. This figure is cited from Ref. [41]. (ATLAS Experiment c©2008 CERN)

inner detectors 
(trackers) 

calorimeters muon spectrometer 
ele-mag hadron 

0                     1              2       3        4      5           10 [m] 

[sectional (cut-away) view]
 

inner detectors
(trackers)

en
d-

ca
p 

re
gi

on
end-cap region

Fcal (EM+H)

Ecal
Hcal

muon spectrometer

barrel region

Figure 3.2: An extremely-simplified (and thus inaccurate) version of Fig. 3.1. The red line in each figure
illustrates an imaginary trajectory of a particle produced at the collision point. The upper figure shows the
approximate scale of the detector, and the lower is a cartoon describing the detector system. The detectors
are roughly separated to the “barrel” region (not shaded) and the “end-cap” region (shaded).
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Figure 3.3: An overview of the ATLAS inner detectors (ID), which can be found at the center of Fig. 3.1.
The pixel detector, the semiconductor tracker (SCT), the transition radiation tracker (TRT) are respectively
indicated. See Fig. 3.4 for the actual installation of the detectors. This figure is cited from Ref. [41].
(ATLAS Experiment c©2008 CERN)
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Figure 3.4: A cut-away view of the ATLAS inner detectors (ID). The collision point locates in the left–
bottom corner of this figure. We can see that each detector is separated to the barrel part and the end-cap
part. The trackers are installed within |η| < 2.5, but the TRT coverage is restricted to |η| < 1.9. This figure
is cited from Ref. [41]. (ATLAS Experiment c©2008 CERN)
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Figure 3.5: A cut-away view of the ATLAS calorimeters. Detailed explanation is found in the text. This
figure is cited from Ref. [41]. (ATLAS Experiment c©2008 CERN)

the transition radiation tracker (TRT) are installed. In Fig. 3.1, the pixel is installed inside the very central
yellow tube, and the SCT surrounds it. They as well as the TRT are clearly observed in Fig. 3.3, a detailed
view of the ID. In addition, to see the exact size of each inner detector, a cut-away view of the ID is provided
in Fig. 3.4.

The calorimeters, surrounding the ID, are composed by the electromagnetic calorimeter (ECAL), the
hadronic calorimeter (HCAL), and the forward calorimeter (FCAL). A detailed cut-away view is provided
in Fig. 3.5, where we can clearly find the ECAL as “LAr electromagnetic barrel” and “LAr electromagnetic
end-cap (EMEC),” the HCAL as “Tile (extended) barrel” and “LAr hadronic end-cap (HEC)”, and the FCAL
as “LAr forward (FCal).”

The ECAL is the inner part of the calorimeter, which consists of a barrel part (“LAr electromagnetic
barrel”) for |η| < 1.475 and two end-cap parts (“LAr electromagnetic end-caps”) for 1.375 < |η| < 3.2. They
all are sampling calorimeter with liquid argon (LAr) and lead. Electrons and photons mainly interact with the
ECAL, and lose almost all of their energy to be observed as electromagnetic jets in the ECAL. The energy
loss of electrons is through Bremsstrahlung, while photons have various interactions such as e+e− pair-
production, photo-electric effect, and Compton scattering. Note that the muon does not stop here because
its energy is too small to cause significant Bremsstrahlung; the energy loss dE/dx with Bremsstrahlung of a
particle whose mass is m is approximately proportional to E/m2, and thus, E & 1 TeV for muon is required
to trigger Bremsstrahlung.

The HCAL of the ATLAS detector is a sampling calorimeter for hadronic particles. It is with large dense,
and hadronic particles interact with the detector material to deposit their all energy and stops; finally they
are observed as hadronic jets. Iron–scintillating-tile system is used to cover the barrel region: the apparatus
for |η| < 1.0 is called “tile barrel”, and for 0.8 < |η| < 1.7 are “tile extended barrel” as shown in Fig. 3.5. For
the end-cap region copper–LAr system is used, which is displayed as “LAr hadronic end-cap” in the figure.

The very forward regions of 3.1 < |η| < 4.9 are covered with the FCAL. Copper–LAr system for
electromagnetic objects and Wolfram–LAr system for hadrons are utilized.

The MS, the outermost apparatus of the ATLAS detector, is another tracker for muons. All the other
(known) particles but muons and neutrinos are already trapped in the previous detectors, and here momenta
of muons are measured.

In addition to the above detectors, the ATLAS experiment has three smaller detector systems in a very
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forward (and backward) region: LUCID (luminosity measurement using Cerenkov integrating detector),
ZDC (zero-degree calorimeter), and ALFA (absolute luminosity for ATLAS). They lie ±17 m, ±140 m, and
±240 m from the collision point, respectively. The main purposes of the LUCID and the ALFA are to mea-
sure the integrated luminosity and to provide online monitoring of the instantaneous luminosity and beam
conditions [41]. The ZDC is mainly utilized to detect very forward neutrons in heavy-ion collisions [41].

* * *

The performance of the ATLAS detector is fully exploited within |η| < 2.5, or 9◦ < θ < 171◦. The
coverage of the detectors is approximately summarized as: |η| < 2.5 for the trackers, |η| < 3.2 for the ECAL
and the HCAL, and |η| < 2.7 for the MS. The FCAL is installed at 3.1 < |η| < 4.9. Only the central region is
utilized for usual searches for models beyond the Standard Model.

3.1.3 Triggering

The nominal bunch-crossing rate of the ATLAS detector is 40 MHz, which means that enormously vast
numbers of collisions occur at the center of the ATLAS detector. Not all of them can be recorded to the
storage due to limitations of processing speed and storage capacity. Therefore, a system of event selections,
called triggering system, is installed in the data-taking system. The selections are designed to pickup events
of our interest to reduce the output rate to ∼ 200 Hz (≈ 300 MB/s), which is acceptable by the data-taking
system [42].

Several selections are installed inclusively; i.e., an event passes the trigger and is stored for the physics
analysis if it fulfills at least one of the trigger requirements. A famous selection is that requiring hard jets
plus missing energy; for example, in the analysis which we will examine in Sec. 5.6.2, events which passed
the trigger requiring missing energy of�ET > 100 GeV and at least one jet with pT > 80 GeV are utilized.

Note that the criteria depend on the instantaneous luminosity of the LHC; in the run of 2012, the bunch-
crossing rate was < 20 MHz, and thus the criteria were looser than those designed for the nominal rate.

Section 3.2 Object Identification and Reconstruction
The detectors are installed to detect particles produced in collisions, that is, in fact, to identify their species
and to reconstruct their momenta and energy. Detection is always accompanied by efficiency, resolution, and
fake rate. These are studied at first in silico, i.e., in Monte Carlo simulations, and now are measured in situ.

We will briefly review those issues on identifications, especially for jets, electrons, and muons in detail,
which are important in our numerical evaluations of the SUSY model discussed later.

Hadron

Hadronic particles are captured in the HCAL and produce hadronic showers to be observed as “jets.” In
the calorimeter, which consists of many cells, measured is how much energy is deposited in the respective
cells. Thus we have to reconstruct jets from such information. Many algorithms, called jet algorithms,
are invented to this end. Recent ATLAS SUSY searches usually utilized the anti-kt algorithm [44] with a
distance parameter of 0.4.

In the actual experiment the energy of the jet is calibrated to match the result from their full detector
simulations, but it is beyond the scope of this dissertation.

b-tagging

The b-quark always appears in new physics searches at the collider experiment in these days; the top quark
always produces a b-quark, and the dominant decay branch of the Higgs boson is expected as h → bb̄.
Therefore, it is very important to identify hadronic particles which originate in b-quarks. This is called
“b-tagging,” and several algorithms are invented to this end.
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One famous method for b-tagging is the secondary-vertex method, which exploits a characteristic feature
of the b-mesons that their lifetime is slightly longer than that of other mesons. It is about 1.5 ps, and thus the
flight is a few millimeters, which is observable with the ID [45].

b-tagging algorithms are applied to the reconstructed jets, and decisions are made that they are b-jets or
not. Here the efficiency and the fake rate appear. It is important that the fake rate for jets containing (or,
originating in) c-quark is remarkably worse than that for the light-jets (jets without c- and b-quarks).

Recent analyses by the ATLAS collaboration utilize the MV1 algorithm, a neural-network-based al-
gorithm whose input is taken from several stand-alone b-tagging algorithms. As is expected, this neural-
network-based algorithm generally yields better efficiency [46] and better jet rejection [46, 47].

Electron

Electrons produced at the collision point leave tracks in the trackers, and provide shower to stop in the ECAL.
Thus identification and reconstruction of electrons utilizes the trackers and ECAL. Since similar signatures
are provided by charged hadrons, it is important to reject jets faking electrons, but then we face a difficult
trade-off between identification efficiency and rejection power. As a solution several criteria are defined for
electron identification.

The recent techniques for electron reconstruction are summarized in Ref. [48]. In the document three
criteria for the central region and two for the forward region are defined.

For electron identification in the central region with the tracker coverage, |η| < 2.47, “loose”, “medium”
and “tight” selections are provided with an expected jet rejection of 500, 5000 and 50000, respectively.
The “loose” selection employs only the calorimeter information. The “medium” selection further requires
a track–cluster matching, and track quality provided by the pixel and the SCT. In the “tight” selection the
criteria of the “medium” are tightened, the information from the TRT detector is used, and discrimination
against photon conversion is employed.

For the forward region of 2.5 < |η| < 4.9, the region without trackers, “forward loose” and “forward
tight” selections are defined, which utilize only the calorimeter information Electrons in this region are
usually not used in searches for models beyond the Standard model.

The electron reconstruction efficiency and the momentum resolution are publicly reported in Ref. [48]*1

with the tag-and-probe method based on
√

s = 7 TeV collision data corresponding to the integrated luminos-
ity of 40 pb−1, which were taken in the year 2010. Here one should note that the efficiency for an electron
εelec is decomposed into two factors as

εelec = αreco · εID. (3.1)

The first term αreco is the efficiency for the cluster in the ECAL from an electron to be reconstructed well,
and the second term εID is that for an electron to pass the selection criteria discussed above. αreco is measured
with Z → ee events, and εID is with Z → ee for pT ∈ [20, 50] GeV, W → eν for pT ∈ [15, 50] GeV and
J/ψ→ ee for pT ∈ [4, 20] GeV.

The Bremsstrahlung effect with materials before the ECAL is not negligible for electrons. To correct
the energy loss, a technology called the Gaussian sum filter is utilized in some of recent analyses, e.g. in
Ref. [49], which provides better performance in the electron detection [50].

The ATLAS collaboration seems to have re-optimized the selections and defined “loose++”,
“medium++”, and ”tight++” [51], whose definitions are hardly found in public documents. We do
not discriminate the re-optimized selection with the original ones for simplicity.

These reports are summarized on an web page*2, where preliminary plots of the efficiency and the reso-
lution measurements are also available.

*1This is the latest public report (conference note) at the date of November 2012.
*2https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ElectronGammaPublicCollisionResults for electrons, and
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonPerformancePublicPlots for muons, as of November 2012.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ElectronGammaPublicCollisionResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonPerformancePublicPlots
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Muon

Muons in the ATLAS detector, produced at the center, fly through the ID, pass through the calorimeters
with a little energy deposits, and reach the muon spectrometer (MS). Muons are reconstructed with the MS,
which is essential for muon identification and reconstruction. The ID are also used to increase resolution
and efficiency.

Recently the ATLAS collaboration reported three methods of the muon identification [52, 53]. Stand-
alone (SA) muon is the muon which is reconstructed with utilizing only the MS, i.e., without using the
ID. Their direction and momenta are determined with the trajectory in the MS, taking energy losses in
the calorimeters into account. Combined (CB) muon and segment tagged (ST) muon are, meanwhile,
reconstructed with utilizing both the ID and the MS. In the former case the identification is respectively
done in the MS and the ID, and a combination of an MS track and an ID track is employed. A successful
combination results in a CB muon. In the latter case the identification is done in the ID. The ID track is
extrapolated to the MS, and a successful association with MS track segments is reconstructed as a ST muon.

CB muons are with the highest purity, and thus usually utilized. ST muons are sometimes used supple-
mentarily to compensate the inefficiency of that for CB muons.

The muon reconstruction efficiency is publicly reported in Ref. [53] and Ref. [54]*3. In Ref. [53] the
efficiency for pT > 20 GeV is measured with Z → µµ events. The efficiency for pT ∈ [2, 10] GeV is reported
in Ref. [54], where J/ψ → µµ events are used. Both measurements utilize the tag-and-probe method, and
are based on the

√
s = 7 TeV collision data corresponding to the integrated luminosity of 40 pb−1, which

were taken in the year 2010.
The muon momentum resolution is reported in Ref. [52]*4, which is based on Z → µµ andW → µν

events in the 2010 data of 7 TeV and 40 pb−1.
These reports are summarized on an web page∗2, where preliminary plots of the efficiency and the reso-

lution measurements are also available. Especially several plots for the efficiency measurement at the 8 TeV
LHC can be found as a rapid communication [55].

Section 3.3 Concluding Remark
With the detector and the strategy we have seen in this chapter, the discovery of the Higgs boson was
achieved. However, here another factor which helped the discovery should be emphasized. It is provided by
the effort of the collaboration for the LHC accelerator.

The LHC ran at the energy of ECM = 7 TeV in 2010 and 2011, and data corresponding to an integrated
luminosity of 5.3 fb−1 were recorded at the ATLAS experiment. Then in 2012 the energy was increased to
ECM = 8 TeV, and data of 21.7 fb−1 were obtained. Especially in 2012 run, the collision rate was increased
to 20 MHz, and the peak luminosity of 7.73 × 1033 cm−2s−1 is recorded with fully utilizing the accelerator.
With these great utilizations of the LHC, the discovery of the Higgs boson was achieved.

On 17 December 2012, the LHC was shut down to prepare for collisions with ECM = 13 TeV and 14 TeV.
In the 13 TeV run expected to start in 2015, the collision rate will be increased to the nominal 40 MHz, which
will provide larger instantaneous luminosity of ∼ 1 × 1034 cm−2s−1 to allow us to expect data corresponding
to O(100) fb−1 in the 13–14 TeV runs.*5

Now we have to wait for three years, but now, contrary to that after the accident in 2009, we have data,
which are enough to allow us to find the “tail” of the physics beyond the Standard Model buried inside them.

In the next chapter, we will review the MSSM as a promising candidate for such theories, and discuss its
current status with examining the data.

*3These are the latest public reports (conference notes) at the date of November 2012.
*4This is the latest public report (conference note) at the date of November 2012.
*5Also in order to obtain much more data the HL-LHC (High Luminosity Large Hadron Collider) is proposed, where an instantaneous

luminosity of ∼ 3 ×1034 cm−2s−1 and an integrated luminosity of ∼ 3000 fb−1 are expected.
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Chapter 4

The MSSM and Its Current Status

Section 4.1 The MSSM
The minimal supersymmetric standard model (MSSM) [11, 12, 13] is the minimal supersymmetric extension
of the Standard Model. It is characterized by imposed gauge symmetries and field content, as well as the
Standard Model. The gauge symmetry of the Standard Model is the same as the Standard Model:

GMSSM = SU(3)strong × SU(2)weak × U(1)Y . (4.1)

The field content is shown in Table 4.1. Here, unlike the Standard Model, we need two Higgs doublets Hu
and Hd. This is because the SUSY severely constrains the Lagrangian to forbid a single Higgs doublet to
have Yukawa interactions both with the up-type quarks (Q and Ū) and down-type quarks (Q and D̄). Note
that the anomaly cancellation condition, in the consideration of which fermionic partners of the Higgs boson
must be taken into account, is satisfied with these two doublets.

The symmetry and the field content lead us to the following superpotential of the MSSM:

Wfull = µHuHd − (Yu)i j HuQiŪ j + (Yd)i j HdQiD̄ j + (Ye)i j HdLiĒ j

+ κiHuLi +
1
2
λi jkLiL jĒk + λ′i jkLiQ jD̄k +

1
2
λ′′i jkŪiD̄ jD̄k.

(4.2)

In the terms in the second line of the expression, however, the baryon number B and the lepton number
L are not conserved. This is not only inconsistent with the fact that B- and L-violations are not observed
yet in experiments, but also makes protons decay in a very rapid rate via, for example, the Feynman di-
agram described in Fig. 4.1. The decay rate of the proton is severely constrained by Super-Kamiokande
experiments [56]. For this channel, the constraint is

Γ(p→ πe+) ∼
∣∣∣λ′112λ

′′
112

∣∣∣2 m5
proton

m4
s̃R

=

∣∣∣λ′112λ
′′
112

∣∣∣2
2.9 ×10−20 yr

(
1 TeV
ms̃R

)4

<
(
8.2 ×1033 yr

)−1
, (4.3)

which results in the constraint on the coupling constants of
∣∣∣λ′112λ

′′
112

∣∣∣ . 10−27.
In order to solve this unnaturalness, we usually install the conservation of the R-parity [13] into the

MSSM, which is a discrete Z2 symmetry defined as PR := (−1)3B−L+2s. Here s is the spin of the particle.
The exact conservation of the R-parity restricts the superpotential as

W = µHuHd − (Yu)i j HuQiŪ j + (Yd)i j HdQiD̄ j + (Ye)i j HdLiĒ j, (4.4)

and now the baryon number B and the lepton number L are conserved at the classical level. (Note that the
sphaleron process, mentioned in Sec. 2.1.) Conservation of B and L at the tree level is achieved accidentally
in the Standard Model, but in the MSSM we have to impose it by hand. We in this dissertation assume the
R-parity conservation, and use this superpotential (4.4).
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Table 4.1: The field content of the MSSM. In the leftmost column the superfield notation is used, and the
rightmost two columns describe the included fields of the superfield: complex scalar fields for the spin
0 particles, Weyl spinors for the spin 1/2 ones, and vector fields for the spin 1’s. The gauge indices are
omitted, while indices for the three generations are denoted as subscripts i.

Matter and Higgs fields (chiral multiplet)

SU(3) SU(2) U(1) spin 0 spin 1/2

Qi 3 2 1/6 (̃uL, d̃L) (uL, dL)

Ūi 3̄ 1 −2/3 ũ∗R u†R
D̄i 3̄ 1 1/3 d̃∗R d†R
Li 1 2 −1/2 (̃ν, ẽL) (ν, eL)

Ēi 1 1 1 ẽ∗R e†R
Hu 1 2 1/2 (H+

u ,H
0
u) (H̃+

u , H̃0
u)

Hd 1 2 −1/2 (H0
d ,H

−
d ) (H̃0

d , H̃
−
d )

Gauge fields (vector multiplet)

SU(3) SU(2) U(1) spin 1/2 spin 1

G 8 1 0 g̃ g

W 1 3 0 W̃ W

B 1 1 0 B̃ B

s̃∗R
d

u

u

e+

u†

u

Figure 4.1: Feynman diagram of the proton decay caused by the interactions Ū1D̄1D̄2 and L1Q1D̄2. To
forbid this interaction we have to introduce the R-parity.
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This “MSSM with R-parity” provides a very nice explanation of the Dark Matter problem. Under the
R-parity conservation the lightest particle among those having odd parity, actually which is the lightest
supersymmetric particle (LSP), becomes stable. The LSP is considered as a promising candidate for the
Dark Matter [57].

Strictly speaking, the R-parity does not make protons stable. Besides the sphaleron process, the
B and L are violated in higher dimensional interactions even in the presence of the R-parity con-
servation. Such terms can be forbidden by imposing, e.g., the baryon triality B3 [58] or the proton
hexality [59] instead of the R-parity, where these symmetries conserve B and L up to dimension
five operators with holding the stability of the LSP.

On the other hand, just for avoiding the proton decay problem, we do not have to forbid both the
B- and L-violations. Protons remain stable if the baryon number is conserved, or the lepton number
is conserved and the LSP is heavier than protons. In both choices the LSP becomes unstable, and
difficult to be served as a Dark Matter candidate.

Now we can write down the full Lagrangian of the MSSM, but it is still insufficient because we know our
Universe is not supersymmetric. We have to introduce additional “SUSY-breaking (���SUSY)” terms, which
do not respect the SUSY, into the Lagrangian. However, we must be careful not to disgrace the MSSM.
The hierarchy problem is solved in the MSSM because the SUSY guarantees the condition |k|2 = ks in
Eqs. (2.13) and (2.14). For this reason we usually introduce only the “soft” SUSY-breaking terms, or terms
whose coupling constants have positive mass dimension. Then the condition |k|2 = ks does not violated even
in quantum corrections because soft couplings do not appear in the renormalization group equations of the
dimensionless couplings.

The soft SUSY-breaking Lagrangian of the MSSM is given as

−L��SUSY =
1
2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + H.c.

)
+

[
−(au)i jHuQ̃ĩū j + (ad)i jHdQ̃i

˜̄d j + (ae)i jHdL̃ĩē j + H.c.
]

+

[(
m2

Q

)
i j

Q̃∗i Q̃ j +
(
m2

L

)
i j

L̃∗i L̃ j +
(
m2

Ū

)
i j
˜̄u∗i ˜̄u j +

(
m2

D̄

)
i j
˜̄d∗i ˜̄d j +

(
m2

Ē

)
i j
˜̄e∗i ˜̄e j

]
+

[
m2

Hu
H∗uHu + m2

Hd
H∗dHd + (bHuHd + H.c.)

]
,

(4.5)

where Ma and m2
X are the (quadratic) masses for the gauginos and the scalar bosons (Higgs bosons, squarks

and sleptons), au,d,e are called trilinear scalar couplings, and b is the off-diagonal mass term of the Higgs
bosons. For later convenience, we here define the following parameters as usual:

(Au)i j :=
(au)i j

(Yu)i j
, (Ad)i j :=

(ad)i j

(Yd)i j
, (Ae)i j :=

(ae)i j

(Ye)i j
, B :=

b
µ
. (4.6)

In the MSSM we have redefined the phases so that the coefficient b, the vacuum expectation values of the
Higgs bosons, and fermion masses are to be positive. Then the CKM matrix has one phase as is in the case of
the Standard Model, and the phases are thrust to the SUSY-breaking parameters Ma and ai. Nevertheless, we
ignore these phases in this dissertation; in particular, Ma are assumed positive throughout our discussions.

* * *

Breaking a symmetry by hand is always accompanied by a new problem, and this is the case, too. Not
only Ma but also m2 and a in Eq. (4.5) have complex phases in general and induces CP-violation. Also
those for quarks and leptons can have off-diagonal component, and large flavor violation may be yielded.
These CP- and flavor violation may easily contradict with current observations; these are called the SUSY
CP- and flavor problems. These problems originate in a fundamental question that what kind of mechanism
generates the SUSY-breaking effects. Various models have been built, or are being built, to achieve a realistic
SUSY-breaking.

A promising model for SUSY-breaking is the gauge-mediated SUSY-breaking (GMSB) scenario [60,
61]. In this scenario the source of SUSY-breaking is “hidden” from the MSSM particles, i.e. there are no
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direct interactions between the MSSM fields and the source of SUSY-breaking. Instead the existence of
the source, or the hidden sector, is mediated with extra fields, called messengers, which interact with the
MSSM particles via the Standard Model gauge interactions. Since the gauge interactions do not “know”
CP-violating phases or the flavor indices, we can circumvent the SUSY CP- and flavor problems. This
GMSB framework is adopted to the V-MSSM, introduced in Sec. 5, which we call “V-GMSB scenario.”

Section 4.2 Higgs Mass in the MSSM
The Higgs sector of the MSSM is completely different from that of the Standard Model. We thus begin with
the discussion on the SUSY from reviewing the Higgs sector and the electroweak symmetry breaking inside
it.

4.2.1 A brief review of tree-level result
We start from the tree-level discussion*1. The tree-level scalar potential related to the Higgs fields is given
directly from the superpotential (4.4) and the SUSY-breaking Lagrangian (4.5) as

V (0)
Higgs =

(
|µ|2 + m2

Hu

) (∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2) +
(
|µ|2 + m2

Hd

) (∣∣∣H0
d

∣∣∣2 +
∣∣∣H−d ∣∣∣2) +

[
b
(
H+

u H−d − H0
u H0

d

)
+ H.c.

]
+
g2

Y + g2
2

8

(∣∣∣H+
u

∣∣∣2 +
∣∣∣H0

u

∣∣∣2 − ∣∣∣H0
d

∣∣∣2 − |Hd|
2
)2

+
g2

2

2

∣∣∣H+
u H0

d
∗ + H0

u H−d
∗
∣∣∣2 . (4.7)

We choose the SU(2) basis not to break the electromagnetic symmetry, which leads us to

V (0)
Higgs =

(
|µ|2 + m2

Hu

) ∣∣∣H0
u

∣∣∣2 +
(
|µ|2 + m2

Hd

) ∣∣∣H0
d

∣∣∣2 − (
bH0

u H0
d + H.c.

)
+
g2

Y + g2
2

8

(∣∣∣H0
u

∣∣∣2 − ∣∣∣H0
d

∣∣∣2)2
. (4.8)

As discussed below Eq. (4.6), we take as a convention b > 0 by redefining the phases of Hd. Then at minima
of V (0)

Higgs H0
u H0

d > 0, and thus we can take the convention under which the vacuum expectation values of H0
u

and H0
d are real and positive.

We would like to derive the vacuum expectation values

〈Hu〉 = vu = v sin β, 〈Hd〉 = vu = v cos β, v ≈ 174 GeV, (4.9)

from this potential. Ideologically (v, β) are extracted from the condition〈
∂

∂H0
u

V (0)
Higgs

〉
=

〈
∂

∂H0
d

V (0)
Higgs

〉
= 0, (4.10)

but, since we actually know the value of v as 174 GeV, we use these conditions not to determine (v, tan β)
but to constrain the parameters of the MSSM

(
m2

Hu
,m2

Hd
, µ, b

)
with treating (v, tan β) as input values. Then

we obtain

m2
Hu

+ |µ|2 − b cot β −
1
2

m2
Z cos 2β = 0, m2

Hd
+ |µ|2 − b tan β +

1
2

m2
Z cos 2β = 0, (4.11)

where the Z-boson mass m2
Z =

(
g2

Y + g2
2

)
v2/2 is used, or equivalently

sin 2β =
2b

m2
Hu

+ m2
Hd

+ 2 |µ|2
, m2

Z =

∣∣∣m2
Hd
− m2

Hu

∣∣∣√
1 − sin2 2β

− m2
Hu
− m2

Hd
− 2 |µ|2 , (4.12)

as the constraints.
*1Here we just incorporate a brief review. More detailed discussions can be found in, e.g., Ref. [62].
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With the determined values of
(
m2

Hu
,m2

Hd
, µ, b

)
, we can evaluate the mass terms of the Higgs sector. The

mass matrix for the CP-even Higgs bosons, (h,H), is obtained to be

V 3
1
2

(
h H

)
Rα

T

(
M

(0)
uu M

(0)
ud

M
(0)
ud M

(0)
dd

)
Rα

(
h
H

)
, (4.13)

where

M
(0)
uu = |µ|2 + m2

Hu
+

1
2

m2
Z(1 − 2 cos 2β), M

(0)
ud = −b −

1
2

m2
Z sin 2β,

M
(0)
dd = |µ|2 + m2

Hd
+

1
2

m2
Z(1 + 2 cos 2β),

(4.14)

and the tree-level masses are as

m2
A =

2b
sin 2β

= 2 |µ|2 + m2
Hu

+ m2
Hd

(4.15)

m2
h,H =

1
2

m2
Z + m2

A ∓

√(
m2

A − m2
Z

)2
+ 4m2

Zm2
A sin2 2β

 , (4.16)

m2
H± = m2

A + m2
W . (4.17)

Here we have defined the well-known Higgs bosons*2, h, H, A, H±, and the Nambu–Goldstone bosons, G0,
G±, as (

H0
u

H0
d

)
=

(
vu
vd

)
+

1
√

2
Rα

(
h
H

)
+

i
√

2
Rβ0

(
A

G0

)
,

(
H+

u
H−d
∗

)
= Rβ+

(
G+

H+

)
, (4.18)

with the four rotation matrices

Rα =

(
cosα sinα
− sinα cosα

)
, Rβ0 =

(
sin β0 cos β0
− cos β0 sin β0

)
, Rβ± =

(
sin β± cos β±
− cos β± sin β±

)
. (4.19)

The mixing angle α, which is traditionally chosen to be negative, is related to tan β at the tree level as

tan 2α
tan 2β

=
m2

A + m2
Z

m2
A − m2

Z

. (4.20)

The case where m2
A � m2

Z is called “decoupling limit”. In this limit the angles α and β are related as

tan 2α
tan 2β

→ 1
(
α→ β −

π

2

)
. (4.21)

* * *

Let us check resulting features of the electroweak symmetry breaking. It is straightforward to check that
the SU(2) gauge bosons successfully obtain masses:

L ⊃

∣∣∣∣(∂µ − ig2Wµ −
1
2 igY Bµ

)
Hu

∣∣∣∣2 +
∣∣∣∣(∂µ − ig2Wµ + 1

2 igY Bµ
)

Hd

∣∣∣∣2
⊃

1
2

(∂µh)2 +
v2

2

(
g2

2W+µW−
µ +

gZ
2

2
ZµZµ

)
,

(4.22)

which is completely the same as Eq. (2.9), the Standard Model version. Meanwhile the fermion terms are
slightly changed as

−L ⊃ (Yu)i j H0
uuLiu

†

R j + (Yd)i j H0
ddLid

†

R j + (Ye)i j H0
deLie

†

R j

{
(
vYui j sin β

)
uLiu

†

R j +
(
vYdi j cos β

)
dLid

†

R j +
(
vYei j cos β

)
eLie

†

R j.
(4.23)

*2Throughout this dissertation, the term “Higgs boson” in the context of the MSSM (and the V-MSSM) refers to the lighter CP-even
Higgs boson h.
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4.2.2 With one-loop level effective potential
The above discussion is based on the tree level result. As will be mentioned in the discussion section
(Sec. 4.2.4), quantum corrections are crucial to the mass of the Higgs boson in the MSSM, which currently
is calculated up to the three-loop level accuracy [63, 64]. Here, to examine the corrections analytically, we
discuss the one-loop level correction with utilizing the effective potential method.

We begin with the discussion how we should treat the effective potential in the calculation. What we
should consider carefully is that the vacuum expectation value v ≈ 174 GeV should not be changed even if
the potential receives higher order corrections. That is, even the potential is modified as

V (0)
Higgs −→ Veff

Higgs = V (0)
Higgs + ∆V, (4.24)

the conditions 〈
∂

∂H0
u

Veff
Higgs

〉
=

〈
∂

∂H0
d

Veff
Higgs

〉
= 0 (4.25)

must hold with the same value of v ≈ 174 GeV. Thus the constraints (4.11) are modified to be

m2
Hu

+
1

2vu

〈
∂∆V
∂H0

u

〉
+ |µ|2 − b cot β −

1
2

m2
Z cos 2β = 0,

m2
Hd

+
1

2vd

〈
∂∆V
∂H0

d

〉
+ |µ|2 − b tan β +

1
2

m2
Z cos 2β = 0,

(4.26)

and the resulting parameters
(
m2

Hu
,m2

Hd
, µ, b

)
are different from those at the tree level. Here we have already

imposed that tan β is not modified, or in other words, treated it as an input value.
Here let us assume that (µ, b) are kept unchanged, and the change of α, the mixing angle of h and H, can

be neglected. Then we can write down the parameters as

(
m2

Hu
,m2

Hd
, µ, b

)
tree

=

m2
Hu

+
1

2vu

〈
∂∆V
∂H0

u

〉
, m2

Hd
+

1
2vd

〈
∂∆V
∂H0

d

〉
, µ, b


under ∆V

, (4.27)

and the components of the mass matrix for the CP-even Higgs bosons are obtained as

Meff
uu =

〈
1
2

∂2V (0)
Higgs

∂(H0
u)2

+
1
2
∂2∆V
∂(H0

u)2

〉
under ∆V

=

〈
|µ|2 + m2

Hu
+

1
2

m2
Z(1 − 2 cos 2β)

〉
under ∆V

+
1
2

〈
∂2∆V
∂(H0

u)2

〉
under ∆V

=M
(0)
uu −

1
2vu

〈
∂∆V
∂H0

u

〉
under ∆V

+
1
2

〈
∂2∆V
∂(H0

u)2

〉
under ∆V

,

(4.28)

et cetera, or simply evaluated as

∆Muu =
1
2

(
∂2

∂vu
2 −

1
vu

∂

∂vu

)
〈∆V〉 , ∆Mud =

1
2

∂2

∂vu∂vd
〈∆V〉 , ∆Mdd =

1
2

(
∂2

∂vd
2 −

1
vd

∂

∂vd

)
〈∆V〉 . (4.29)

Especially the mass of the lighter Higgs boson is modified to be

m2
h =

[
m2

h

]
tree

+

[
cos2 α

2

(
∂2

∂vu
2 −

1
vu

∂

∂vu

)
+

sin2 α

2

(
∂2

∂vd
2 −

1
vd

∂

∂vd

)
− sinα cosα

∂2

∂vu∂vd

]
〈∆V〉 , (4.30)

and if we take the decoupling limit, we obtain

m2
h =

[
m2

h

]
tree

+

[
sin2 β

2

(
∂2

∂vu
2 −

1
vu

∂

∂vu

)
+

cos2 β

2

(
∂2

∂vd
2 −

1
vd

∂

∂vd

)
+ sin β cos β

∂2

∂vu∂vd

]
〈∆V〉 . (4.31)
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Note that the tree level mass [m2
h]tree should be evaluated with absence of, and the correction terms should

be with presence of, the correction ∆V .

Here we set (µ, b) unchanged and neglected the change of α to obtain the equation (4.30), and
took the decoupling limit to Eq. (4.31). However, even if we instead set (mHu ,mHd ) unchanged,
Eq. (4.31) can still be obtained at the decoupling limit. We should note that there lie several
approximations, but since, anyway, corrections at higher levels are more important, we do not care
these issues.

4.2.3 MSSM Higgs mass at the one-loop level
The effective potential of the MSSM at the one-loop level is known as, in the DR′ scheme [65],*3

∆V (1) =
1

16π2

 ∑
X=spin 0

F
(
m2

X

)
− 2

∑
X=spin 1/2

F
(
m2

X

)
+ 3

∑
X=spin 1

F
(
m2

X

) , (4.32)

where

F(x) =
x2

4

(
log

x
Q2 −

3
2

)
(4.33)

with renormalization scale Q, which is irrelevant in calculation of the Higgs mass. Note that the summation
should be taken for all particles; i.e., one must not forget the color factor Nc = 3.

The dominant contributions come from the top–stop sector. The masses expressed as functions of (vu, vd)
are obtained from the mass matrices

Mstop =

m2
Q33

+ Y2
t v

2
u + 1

2

(
1
2g

2
2 −

1
6g

2
Y

) (
v2

d − v
2
u

)
Yt(vuA∗t − µvd)

Yt(vuA∗t − µvd) m2
Ū33

+ Y2
t v

2
u + 1

2 ·
2
3g

2
Y

(
v2

d − v
2
u

) , Mtop = Ytvu. (4.34)

Then through a bit tough calculation we can obtain

M
(1)
uu

∣∣∣∣
top–stop

=
3m4

t

2π2v2
u

log
m2

S

m2
t

+
AtXt

m2
S

1 − AtXt

12m2
S

 , (4.35)

M
(1)
ud

∣∣∣∣
top–stop

=
3m4

t

2π2v2
u

(At − Xt)Xt(AtXt − 6m2
S )

12m4
S cot β

, (4.36)

M
(1)
dd

∣∣∣∣
top–stop

=
3m4

t

2π2v2
u

−(At − Xt)2X2
t

12m4
S cot2 β

, (4.37)

and, according to the previous discussion,

∆m2
h

(1)
∣∣∣∣
top–stop

≈

(
sin2 β

2
M

(1)
uu

∣∣∣∣
top–stop

+
cos2 β

2
M

(1)
dd

∣∣∣∣
top–stop

+ sin β cos βM(1)
ud

∣∣∣∣
top–stop

)
(4.38)

=
3Y4

t v
2
u sin2 β

4π2

log

√
m2

S − ∆2

m2
t

+

 X2
t

2∆2 −
m2

S X4
t

8∆6

 log
m2

S + ∆2

m2
S − ∆2

+
X4

t

4∆4

 + O
(
g2

2, g
2
Y

)
(4.39)

≈
3m4

t

4π2v2

log
m2

S

m2
t

+
X2

t

m2
S

1 − X2
t

12m2
S

 − 1
2

 ∆2

m2
S

2

+ · · ·

 (4.40)

where

m2
S =

m2
t̃1

+ m2
t̃2

2
, ∆2 =

m2
t̃2
− m2

t̃1

2
, Xt = At − µ cot β, v ≈ 174 GeV. (4.41)

*3The DR′ scheme is a modified version of the DR scheme [66] in which effects of the mass of the ε-scalars, appearing as the extra
components of the vector bosons corresponding to the extra 2ε dimension in the dimensional reduction methodology, are properly
removed. More detailed description can be found in Ref. [67].
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4.2.4 Discussion — The 126 GeV Higgs
The most important difference on the Higgs mass between the Standard Model and the MSSM is the Higgs
quartic coupling. In the Standard Model the coupling, denoted by λ in Eq. (2.6), is an unknown parameter,
and we can tune it to obtain the Higgs mass of ∼ 126 GeV. On the contrary, under the MSSM, the quartic
coupling is fixed by the SUSY, as is shown in Eq. (4.8). Therefore, the Higgs boson mass is restricted, and
actually the mass has an upper bound at the tree level of [68]

m2
h ≈ m2

Z cos2 2β < m2
Z . (4.42)

As a result, in 1980’s, the Higgs boson under the MSSM was considered lighter than Z-boson. Therefore,
people considered that the Large Electron–Positron Collider (LEP), which was designed in early 1980’s with
ECM = 100 GeV and started operation in 1989, would discover the Higgs boson or reject the MSSM. In those
days, the most promising channel for the Higgs search was therefore e+e− → Z → he+e− for the early stage
and e+e− → Zh for ECM & 180 GeV, and this upper bound was referred in many reports from the LEP
experiments. Ref. [69] from the DELPHI collaboration is an example, which was published in August 1990
to report that the MSSM Higgs boson must be heavier than 28 GeV for all values of tan β.

However, Nature was not so simple. In the year 1990, several groups found that radiative corrections
could raise the Higgs boson mass [70, 71]. In 1991, before the exclusion limit reached to the Z-boson mass,
those papers were published and the upper bound on the MSSM Higgs boson was loosened [70, 71, 72, 73,
74]. For example, if one substitutes tan β = 10, MA = MS = 1 TeV, Xt = 0 and ∆2 = 0 in Eqs. (4.16) and
(4.40), the Higgs mass is evaluated to be

mh ∼
√

(89.4 GeV)2 + (88.8 GeV)2 = 126 GeV (Xt = 0 : no-mixing), (4.43)

which could not be reached even after the upgrade of the LEP collider, i.e. with the LEP-II experiment.
Higgs mass increase is enhanced at Xt = ±

√
6MS due to the stop mixing, which is called mh-max scenario

or maximal mixing scenario. The Higgs mass becomes, with the same parameters and simply assuming
∆ = 0,

mh ∼
√

(126 GeV)2 + (82.1 GeV)2 = 150 GeV (Xt = ±
√

6MS : maximal-mixing). (4.44)

The above calculation was based on the approximation that only the top–stop sector was included. Other
one-loop level contributions, such as threshold effects on the top-quark Yukawa coupling and corrections
from bottom–sbottom and tau–stau sector, are important as well as higher-level loop corrections. The
bottom–sbottom and the tau–stau one-loop level contributions are approximately given as [75, 76]

∆m2
h ' −

m4
b

16π2v2 cos4 β

µ4

M4
SUSY

1 +
1

16π2

(
9hb2 −

5m2
t

v2 − 64πα3

)
log

M2
SUSY

m2
t

 (4.45)

and

∆m2
h ' −

m4
τ

48π2v2 cos4 β

µ4

M4
τ̃

, (4.46)

respectively. They give negative contributions of ∆mh ∼ −10 GeV to the Higgs mass.
Conclusively, to realize the 126 GeV Higgs boson within the MSSM, the stop mass MS must be ∼

O(10) TeV in the no-mixing case and ∼ 1–2 TeV in the maximal-mixing scenario (See, e.g., Ref. [77]).

4.2.5 Discussion — The little hierarchy problem
Another interesting feature of the Higgs sector in the MSSM is the so-called little hierarchy problem [78].
This problem lies in Eq. (4.11). The equation must be hold for the Higgs fields to have vacuum expectation

values of v =

√
v2

u + v2
d = 174 GeV, but it includes a cancellation among m2

Hu
, m2

Hd
and µ2. There we actually

need a “little” tuning of order

tuning ∼
m2

Z

m2
Hu

∼
m2

Z

m2
Hd

∼
m2

Z

µ2 , (4.47)
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where the MSSM parameters should be evaluated at the EWSB scale mZ .
This tuning is related to the mass of the stop. The parameter m2

Hu
receives the radiative correction of

∆m2
Hu
∼ −

3Y2
t

4π2 m2
t̃ log

Λ

mt̃
, (4.48)

which can be seen from the renormalization group equations (RGEs) summarized in Appendix 4.A, or
more simply, from the effective potential approach as ∆m2

Hu
≈

〈
d∆V/dH0

u

〉
/(2vu). Thus the tuning can be

interpreted as

tuning ≈ 0.3% ×
( mt̃

1 TeV

)−2
. (4.49)

We hope a lighter stop, or a lighter SUSY scale MSUSY, to eliminate this little tuning.
However, as we saw in the last section, the SUSY scale seems to be heavier than 1 TeV. How can we

settle this collision? Is this inevitable price to pay for eliminating the fine-tuning? This is one of the hottest
topics after the Higgs discovery, and currently under discussions.

Section 4.3 Muon g − 2 in the MSSM
As we saw in Sec. 2.2, the muon g − 2 has 3σ level discrepancy between its experimental result and the
Standard Model theoretical value. The MSSM has extra contributions to the g − 2, and might be a solution
to the g − 2 problem if the sign of the correction falls as the desired one, i.e., positive [79].

As we will saw later in Eqs. (4.53)–(4.57), all the extra contributions for a lepton are proportional to the
mass squared of the lepton. Therefore, the SUSY contribution to the electron g − 2 can be neglected, which,
thus, we do not consider afterwards.

The dominant contributions come from the neutralino–smuon and the chargino–muon-sneutrino loop
diagrams shown in Fig. 4.2. The calculation is straightforward, but summarized here as a reference.

4.3.1 Formulae in mass eigenstates
Relevant interactions of the MSSM are included in the Lagrangian as

L ⊃ −
√

2gY

(
−

1
2
µ̃∗LµLb̃ + µ̃c

R
∗µc

Rb̃
)
−
√

2g2

(̃
ν∗µ µ̃∗L

) 1
2

(
w̃0

√
2w̃+

√
2w̃− −w̃0

) (
ν
µL

)
− Yµ

[(
H̃0

d µ̃L − H̃−d ν̃µ
)
µc

R +
(
H̃0

dµL − H̃−d ν
)
µ̃c

R

]
+ H.c.

(4.50)

in the gauge eigenstates. Defining the mass eigenstates χ̃0
i , χ̃±i and µ̃a as

b̃ = N1i χ̃
0
i

w̃0 = N2i χ̃
0
i

H̃0
d = N3i χ̃

0
i

H̃0
u = N4i χ̃

0
i ,

w̃− = C1i χ̃
−
i

H̃−d = C2i χ̃
−
i ,

w̃+ = D1i χ̃
+
i

H̃+
u = D1i χ̃

+
i ,

µ̃L = E1a µ̃a

µ̃R = E2a µ̃a ,
(4.51)

the terms are rewritten as

L ⊃ −
√

2gY N1i

(
−

1
2
µ̃∗LµLχ̃

0
i + µ̃c

R
∗µc

Rχ̃
0
i

)
− g2

(
D1i ν̃

∗
µχ̃

+
i µL −

N2i
√

2
µ̃∗Lχ̃

0
i µL

)
− Yµ

(
N3i χ̃

0
i µ̃Lµ

c
R −C2i χ̃

−
i ν̃µµ

c
R + N3i χ̃

0
i µLµ̃

c
R

)
+ H.c.

=µ̃∗aχ̃
0
i

[(
gY N∗1i + g2N∗2i

√
2

E∗1a − YµN∗3iE
∗
2a

)
PL +

(
−YµN3iE∗1a −

√
2gY N1iE∗2a

)
PR

]
µ

+ ν̃∗µχ̃
−
i

[
YµC2iPR − g2D∗1iPL

]
µ + H.c.
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Here one should impose proper phase-shifts to the fields so that the masses become positive; thus Nxi’s etc.
are complex in general. Also the small mixing between µ̃L and µ̃R must not be neglected, which actually
does contribute to the final result.

With these obtained couplings, employing the usual calculation of Feynman diagrams, we can obtain the
MSSM contribution ∆aµ to the muon anomalous magnetic moment aµ := (gµ − 2)/2 as

∆aµ =
∑

a

∑
i

fN

(
mµ̃a ,mχ̃0

i
,
gY N∗1i + g2N∗2i

√
2

E∗1a − YµN∗3iE
∗
2a,−YµN3iE∗1a −

√
2gY N1iE∗2a

)
+

∑
i

fC
(
mν̃µ ,mχ̃±i

,−g2D1i,YµC2i

)
;

(4.52)

fN(M,Mχ̃, gL, gR) =
1

16π2

−Re
(
g∗LgR

) mµMχ̃

M2 N1

 M2
χ̃

M2

 − |gL|
2 + |gR|

2

6

m2
µ

M2 N2

 M2
χ̃

M2


 ,

fC(M,Mχ̃, gL, gR) =
1

16π2

−Re
(
g∗LgR

) mµMχ̃

M2 C1

 M2
χ̃

M2

 +
|gL|

2 + |gR|
2

6

m2
µ

M2 C2

 M2
χ̃

M2


 ,

where N1(x) :=
1 − 6x + 3x2 + 2x3 − 6x2 log x

(1 − x)4 , N2(x) :=
1 − x2 + 2x log x

(1 − x)3 ,

C1(x) :=
3 − 4x + x2 + 2 log x

(1 − x)3 , C2(x) :=
2 + 3x − 6x2 + x3 + 6x log x

(1 − x)4 .

4.3.2 Formulae in gauge eigenstates
The above formula (4.52) is accurate and stiff. However, from a theoretical viewpoint formulae in the
gauge eigenstates are more interesting and convenient even at the expense of accuracy. The formulae can
be obtained from the Feynman diagrams shown in Fig. 4.3 with the mass insertion method, which results
in [80]

(a) ∆aµ
(
“chargino”

)
=

g2
2

8π2 m2
µ ·

M2 · µ tan β
m4
ν̃µ

· Fa

(
M2, µ; mν̃µ

)
, (4.53)

(b) ∆aµ
(
“pure-bino”

)
=

g2
Y

8π2 m2
µ ·

µ tan β
M3

1

· Fb

(
mµ̃L ,mµ̃R ; M1

)
, (4.54)

(c) ∆aµ (“µ̃L (bino)”) =
g2

Y

16π2 m2
µ ·

M1 · µ tan β
m4
µ̃L

· Fb

(
M1, µ; mµ̃L

)
, (4.55)

(d) ∆aµ (“µ̃L (wino)”) = −
g2

2

16π2 m2
µ ·

M2 · µ tan β
m4
µ̃L

· Fb

(
M2, µ; mµ̃L

)
, (4.56)

(e) ∆aµ (“µ̃R (bino)”) = −
g2

Y

8π2 m2
µ ·

M1 · µ tan β
m4
µ̃R

· Fb

(
M1, µ; mµ̃R

)
, (4.57)

where

Fa(x, y; z) := +
1
2

C1(x2/z2) −C1(y2/z2)
x2/z2 − y2/z2 , Fb(x, y; z) := −

1
2

N2(x2/z2) − N2(y2/z2)
x2/z2 − y2/z2 . (4.58)

Since dN2(x)/dx < 0 and dC1(x)/dx > 0 for x > 0, these functions Fa and Fb return positive values for any
mass parameters.
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Figure 4.2: The diagrams of the MSSM dominant contributions to the muon g − 2.
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γ
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γ
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µRH̃0
d –̃b

γ
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Figure 4.3: The same as Fig. 4.2, but expressed in terms of the gauge eigenstates.

4.3.3 Interpretation

As is discussed in Sec. 2.2, we need a positive shift of the muon g − 2 to explain the observed value, and
are happy if the shift is ∆aµ ∼ +10−9. From this viewpoint, here we will briefly interpret the obtained result
(4.53)–(4.57).

First let us take the limit where all the relevant mass parameters are common: M1 = M2 = |µ| = mµ̃L =

mµ̃R = mν̃µ =: MSUSY. Then, as the functions return Fa → 1/4 and Fb → 1/12, the results are approximated
to be

[degenerated] ∆aµ(“chargino”) ∼
g2

2

32π2

m2
µ · µ tan β

M3
SUSY

≈ 1.5 ×10−9 ·

 µ tan β
M3

SUSY

 /(100 GeV)2, (4.59)

∆aµ(“neutralino”) ∼ −
g2

2 − g
2
Y

192π2

m2
µ · µ tan β

M3
SUSY

≈ −0.17 ×10−9 ·

 µ tan β
M3

SUSY

 /(100 GeV)2. (4.60)

In this case the chargino diagram (a) gives the dominant contribution, and from the expression we realize
MSUSY ∼ O(100) GeV is required to explain the discrepancy in this degenerated scenario.

What will happen if one of the smuons is extremely heavy? The answer is simple: corresponding
neutralino contributions just vanish. In particular, the case where mµ̃L � mµ̃R is very interesting. The
neutralino contribution becomes negative with µ > 0, and moreover, since mν̃µ ∼ mµ̃L is expected, the total



32 Dissertation / Sho Iwamoto

contribution is given as

[mν̃µ ∼ mµ̃L � mµ̃R ] ∆aµ = −
g2

Y

8π2 m2
µ ·

M1 · µ tan β
m4
µ̃R

· Fb

(
M1, µ; mµ̃R

)
. (4.61)

Thus µ must be, different from the usual scenario, negative to explain the discrepancy.
The other extreme cases are M1 ∼ M2 � µ and M1 ∼ M2 � µ. In the former only the diagram (a)

contributes. Both of the smuons must be light, and µ > 0 should be hold as usual. The latter case has no
diagrams to contribute: ∆aµ ' 0.

The above results are summarized in the next table.

Table 4.2: Summary of the SUSY explanation of the muon g − 2 in several extreme scenarios.

(a) (b) (c) (d) (e)
Note (to solve the discrepancy)

χ̃±1 pure-̃b µ̃L (̃b) µ̃L (w̃) µ̃R (̃b)
degenerated case X (X) (X) (X) (X)
µ̃L, ν̃µ-decoupled X µ < 0 for a positive shift.
µ̃R-decoupled X (X) (X)

Higgsino-decoupled X Both µ̃L and µ̃R must be light.
gaugino-decoupled Impossible.

Section 4.4 The Gauge Coupling Unification
Remember the discussion in Sec. 2.3: physicists desire the gauge coupling unification to realize the grand
unification, a unified explanation of the three forces; under the renormalization group running they approach
to each other at a high-energy scale of ∼ 1015 GeV, but the trajectories have a slight mismatch, which is
summarized in Fig. 2.3.

The unification of the gauge coupling is a virtue of the SUSY theories. In the MSSM the RGEs are
modified with the presence of the SUSY particles as well as two Higgs doublets; they are summarized in the
appendix of this chapter, Appendix 4.A.

In particular, for the gauge couplings, (g1, g2, g3) := (
√

5/3gY , g2, gs), the one-loop level RGEs are well-
known to be

dga

d ln Q
=

g3
a

16π2

−3Ca(G) +
∑

i=matters

Ia(i)

 , (4.62)

where Ca(G) is the quadratic Casimir invariant for the adjoint representation of the group, and Ia(i) is the
Dynkin index of the chiral supermultiplets appearing in the model. For the MSSM these equations are
evaluated as

dg3

d ln Q
=

g3
3

16π2

[
−3 × 3 +

1
2
× 12

]
, (4.63)

dg2

d ln Q
=

g3
2

16π2

[
−3 × 2 +

1
2
× 14

]
, (4.64)

dg1

d ln Q
=

g3
1

16π2

−3 × 0 +

(
1
6

)2

× 18 +

(
−2
3

)2

× 9 +

(
1
3

)2

× 9 +

(
1
2

)2

× 6 + 3 +

(
1
2

)2

× 4

 × 3
5
. (4.65)

These RGEs result in the well-known result displayed in Fig. 4.4, where the unification is much im-
proved. These figures are drawn with the two-loop level RGEs, and three sets of tan β and the SUSY scale
MSUSY are taken for illustration: the top figure is with (MSUSY, tan β) = (1 TeV, 10), the middle one is
(10 TeV, 3), and for the bottom (100 TeV, 40). In any choices the unification is much improved from the
Standard Model case.
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Figure 4.4: The renormalization group evolution of the gauge couplings g3, g2 and g1 (black lines, from top
to bottom) under the MSSM, together with the evolution of Yt (a red line), Yb (a blue line), and Yτ (a green
line). For comparison the evolutions under the Standard Model are drawn with dotted lines. In the three
figures tan β and the SUSY scale MSUSY are differently set: (MSUSY, tan β) = (1 TeV, 10), (10 TeV, 3) and
(100 TeV, 40) from top to bottom. Yb and Yτ appear only in the bottom figure: they are below the plotted
range in the other figures. The input values and the schemes of the RGEs are summarized in Appendix 4.B,
together with a note on approximations employed in drawing these figures.
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Section 4.5 Current Status of the MSSM
— Higgs, g − 2, and LHC SUSY Searches

Let us summarize what we discussed in this chapter.
First we saw the mass of the Higgs boson under the MSSM greatly depends on the stop sector, especially

on the stop mass m̃t and the stop mixing parameter Xt = At − µ cot β. To realize the mass 126 GeV under the
MSSM, the stop mass is required to be O(10) TeV without large stop mixing, and even with the maximal-
mixing of Xt ∼

√
±6mt̃, it should be ∼ 1–2 TeV. This fact prefers heavy SUSY.

On the other hand, the argument of the little hierarchy, embedded in the Higgs potential, prefers light
SUSY; in particular, light m̃t. This is obviously in collision with the argument of the 126 GeV Higgs mass.

We then, in Sec. 4.3, saw that the muon g − 2 discrepancy is explained with the SUSY contributions
if neutralinos, charginos, and smuons are of order 100 GeV. Here light SUSY is preferred; note that this
requirement is not for the colored sector as the previous two, but for the non-colored sector of the MSSM.

Now let us move on to the discussion on results from the LHC experiments. In this dissertation we
concentrate on the R-parity conserving SUSY; the other possibility, R-parity violating SUSY, is beyond the
scope of this dissertation and not discussed.

The most promising channel in LHC SUSY searches is pair-production of colored superparticles, that is,
squarks q̃ and gluinos g̃. Especially, the events from pp→ g̃g̃, g̃q̃(∗) and q̃(∗)q̃(∗) channels can be detected well
in the detectors; multiple hard jets plus large missing energy signature, where jets come from cascade decays
of superparticles, and large missing energy is provided by the LSP. However, we have not detected such
signatures. Now colored superparticles g̃ and q̃(∗) are approximately constrained as mg̃ & 900 GeV and mq̃ &
1400 GeV, respectively, which are relatively heavier than we optimists expected. These constraints were
obtained by the ATLAS collaboration [81], where they analyzed their data corresponding to an integrated
luminosity of 5.8 fb−1 collected at the 8 TeV LHC. The CMS collaboration also analyzed their ∼ 5 fb−1 data
obtained at ECM = 7 TeV, and obtained similar results [82, 83].

Searches focusing on the third generation squarks are also employed. These searches, especially direct
stop searches, are important for the following two reasons. First, the lighter stop is expected to be lighter
due to the mixing, and thus be produced more, than the other squarks. In addition, stop mass is crucial for
the Higgs boson mass and the discussion of the little hierarchy. Such searches are performed with requiring
leptons and/or b-jets (cf. Sec. 3.2), which are expected from the decay of top quarks. However, we have
observed no excess, and the stop mass is constrained as m̃t1 & 500 GeV as long as the separation between
the stop mass and the LSP mass is larger than ∼ 100 GeV [84, 85].

These two LHC results indicate that colored sector of the MSSM is heavy, which is also supported by
the 126 GeV Higgs mass.

Here one possibility arises: colored superparticles are heavy, but non-colored are light to keep the SUSY
explanation of the muon g − 2 anomaly. The SUSY with such a scenario can be searched with focus-
ing on pair-production of charginos, neutralinos, and sleptons via electroweak interactions, i.e., pp →
χ̃0

2χ̃
0
2, χ̃

0
2χ̃

+
1 , µ̃µ̃

∗, etc. Generally it is difficult to be searched for at the LHC, a hadron collider, because
hard jets which are useful to distinguish signal events from background ones are not expected; generally
multiple leptons are instead required in relevant searches. Obtained bounds are ∼ 300–500 GeV on masses
of χ̃0

2 and χ̃+
1 , but these bounds depend to a large extent on the mass spectrum in non-colored sector, and thus

further searches are required. Here it should be noted that these searches do not need higher energy, but a
higher luminosity. As the instantaneous luminosity is to be increased and data of O(100) fb−1 are expected
in the 13–14 TeV runs of the LHC, the runs are of great importance for this scenario.

The following prognostication should also be emphasized: if the three forces are unified under the SU(5)-
GUTs, gaugino masses Ma are expected to be yielded from a common mechanism; then, if charginos and
neutralinos have masses of order 100 GeV, gluino is expected to have a mass of the same order. For example,
if they have the same masses M1 = M2 = M3 at the GUT scale, their masses are expected to be

M1 : M2 : M3 ≈ g
2
1 : g2

2 : g2
3 ≈ 1 : 2 : 7 (4.66)

at the low-energy scale. Therefore, if masses of charginos and neutralinos are . 1 TeV, the gluino mass
is expected to be . 3.5 TeV. This possibility, i.e., charginos, neutralinos, and sleptons have O(100) GeV,
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gaugino mass is a few TeV, and the squarks are too heavy to be produced at the LHC, is also expected to be
focused on at the 14 TeV LHC.

* * *

However, from a theoretical viewpoint, this scenario with heavy-colored light-non-colored particles is
not preferred, because it does not respect the SU(5)-GUTs. The masses of the squarks and the sleptons
should be close, because they are considered to have a common origin, i.e. to originate from the same
multiplets, under the SU(5)-GUTs. Actually, this SU(5)-GUTs hypothesis is fully respected in the simplest
models for the SUSY-breaking, such as the CMSSM (constrained MSSM) scenario, which is sometimes
called the mSUGRA (minimal supergravity), and the GMSB (gauge-mediated SUSY-breaking) scenario.

Unfortunately, experimental results do not support this anticipation. Under the assumption that the
masses of squarks and sleptons are at the same order, it is not so easy to realize the 126 GeV Higgs mass with
explaining the muon g − 2 anomaly. Especially, it is known that the CMSSM scenario does not realize these
two features of the SUSY [14, 86], and the GMSB neither. Nature seems to force us to leave this dream.

The GMSB scenario is, however, too beautiful to be abandoned; the SUSY CP- and flavor problems do
not arise in this framework. Therefore, we consider an extension of the MSSM: the V-MSSM, in which a
vector-like pair of the decuplets of the SU(5), 10 + 10, is appended as extra matters to the MSSM. In the
model, which respects the SU(5)-GUTs, the extra matters contribute to raise the Higgs boson mass, and
therefore the squarks do not need to be so heavy as in the MSSM case. Since the muon g − 2 is scarcely
affected by the extra matters, both features, the 126 GeV Higgs boson and the SUSY explanation of the
muon g− 2, can be simultaneously realized within the simplest SUSY-breaking frameworks, the GMSB and
the CMSSM.

In the next chapter, we will discuss the V-MSSM. Especially, we will examine the V-GMSB scenario,
i.e., the V-MSSM with the GMSB framework, and to see that the 126 GeV mass and the explanation of the
muon g − 2 problem can be simultaneously realized, even under the current LHC constraints. This is the
main topic of this dissertation.
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Appendix 4.A Renormalization Group Equations for the MSSM
In Chapter 5, we will discuss an extension of the MSSM, called the V-MSSM, and introduce the renormal-
ization group equations (RGEs) for the model. Here, paying the cost of verbosity for completeness, the
RGEs for the MSSM parameters are displayed up to two-loop level.

The β-functions are calculated with Susyno 1.1 [87] and checked by comparing with Refs. [67, 88].*4

4.A.1 Restriction and notation
Here we simply employ the following assumptions, that is, we ignore CP- and flavor violations thoroughly.

• The R-parity is conserved.

• The scalar soft mass terms m2
X are diagonal,

• For the A-terms aX and the Yukawa coupling YX , all the components but the (3, 3) are neglected.

• The gaugino masses Ma are real.

The β-function is defined as

dX(Q)
d log Q

=
1

16π2 β
(1) [X] +

1(
16π2)2 β

(2) [X] , (4.67)

where X are one of the MSSM parameters. Their definitions are found in Eqs. (4.4) and (4.5). and Q is the
renormalization scale. The DR

′
scheme [65] is chosen as the renormalization scheme.

The following variables are used in the expressions of the β-functions.

Xt := 2a2
t + 2Y2

t

(
m2

Hu
+ (m2

Q)33 + (m2
Ū)33

)
,

Xb := 2a2
b + 2Y2

b

(
m2

Hd
+ (m2

Q)33 + (m2
D̄)33

)
,

Xτ := 2a2
τ + 2Y2

τ

(
m2

Hd
+ (m2

L)33 + (m2
Ē)33

)
,

ã(t,b,τ) := Y(t,b,τ)a(t,b,τ),

S := m2
Hu
− m2

Hd
+

3∑
i=1

[
(m2

Q)ii − 2(m2
Ū)ii + (m2

D̄)ii − (m2
L)ii + (m2

Ē)ii

]
,

S (2) := −Y2
t

(
3m2

Hu
+ (m2

Q)33 − 4(m2
Ū)33

)
+ Y2

b

(
3m2

Hd
− (m2

Q)33 − 2(m2
D̄)33

)
+ Y2

τ

(
m2

Hd
+ (m2

L)33 − 2(m2
Ē)33

)
+

(
3
10
g2

1 +
3
2
g2

2

) m2
Hu
− m2

Hd
−

3∑
i=1

(m2
L)ii

 +

(
1

30
g2

1 +
3
2
g2

2 +
8
3
g2

3

) 3∑
i=1

(m2
Q)ii

−

(
16
15
g2

1 +
16
3
g2

3

) 3∑
i=1

(m2
Ū)ii +

(
2

15
g2

1 +
8
3
g2

3

) 3∑
i=1

(m2
D̄)ii +

6
5
g2

1

3∑
i=1

(m2
Ē)ii,

σ1 :=
1
5
g2

1

3m2
Hu

+ 3m2
Hd

+

3∑
i=1

(
(m2

Q)ii + 8(m2
Ū)ii + 2(m2

D̄)ii + 3(m2
L)ii + 6(m2

Ē)ii

) ,
σ2 := g2

2

m2
Hu

+ m2
Hd

+

3∑
i=1

(
(3m2

Q)ii + (m2
L)ii

) ,
σ3 := g2

3

3∑
i=1

(
2(m2

Q)ii + (m2
Ū)ii + (m2

D̄)ii

)
.

*4The chosen scheme of Ref. [67] was originally noted as the DR scheme, but actually was the DR′ scheme, as is mentioned in note
added in the paper or, e.g., Ref. [89].
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4.A.2 One-loop level β-functions

β(1) [ga
]

= B(1)
a g3

a

β(1) [Ma] = 2B(1)
a g2

aMa
where

(
B(1)

1 , B(1)
2 , B(1)

3

)
=

(
33
5
, 1,−3

)
(4.68)

β(1) [Yt] =

(
Y2

b −
13
15
g2

1 − 3g2
2 −

16
3
g2

3 + 6Y2
t

)
Yt (4.69)

β(1) [Yb] =

(
6Y2

b −
7
15
g2

1 − 3g2
2 −

16
3
g2

3 + Y2
t + Y2

τ

)
Yb (4.70)

β(1) [Yτ] =

(
3Y2

b −
9
5
g2

1 − 3g2
2 + 4Y2

τ

)
Yτ (4.71)

β(1) [at] =

(
18Y2

t + Y2
b −

13
15
g2

1 − 3g2
2 −

16
3
g2

3

)
at +

(
2̃ab +

26
15
g2

1M1 + 6g2
2M2 +

32
3
g2

3M3

)
Yt (4.72)

β(1) [ab] =

(
Y2

t + 18Y2
b + Y2

τ −
7

15
g2

1 − 3g2
2 −

16
3
g2

3

)
ab

+

(
2̃at + 2̃aτ +

14
15
g2

1M1 + 6g2
2M2 +

32
3
g2

3M3

)
Yb

(4.73)

β(1) [aτ] =

(
3Y2

b + 12Y2
τ −

9
5
g2

1 − 3g2
2

)
aτ +

(
6̃ab +

18
5
g2

1M1 + 6g2
2M2

)
Yτ (4.74)

β(1) [µ] =

(
3Y2

b −
3
5
g2

1 − 3g2
2 + 3Y2

t + Y2
τ

)
µ (4.75)

β(1) [b] =

(
6̃at + 6̃ab + 2̃aτ +

6
5
g2

1M1 + 6g2
2M2

)
µ +

(
3Y2

t + 3Y2
b + Y2

τ −
3
5
g2

1 − 3g2
2

)
b (4.76)

β(1)
[
m2

Hu

]
= −

6
5
g2

1M2
1 − 6g2

2M2
2 +

3
5
g2

1S + 3Xt (4.77)

β(1)
[
m2

Hd

]
= −

6
5
g2

1M2
1 − 6g2

2M2
2 −

3
5
g2

1S + 3Xb + Xτ (4.78)

β(1)
[
(m2

Q)ii

]
= −

2
15
g2

1M2
1 − 6g2

2M2
2 −

32
3
g2

3M2
3 +

1
5
g2

1S +
〈〈

Xt + Xb

〉〉
for i = 3

(4.79)

β(1)
[
(m2

Ū)ii

]
= −

32
15
g2

1M2
1 −

32
3
g2

3M2
3 −

4
5
g2

1S +
〈〈

2Xt

〉〉
for i = 3

(4.80)

β(1)
[
(m2

D̄)ii

]
= −

8
15
g2

1M2
1 −

32
3
g2

3M2
3 +

2
5
g2

1S +
〈〈

2Xb

〉〉
for i = 3

(4.81)

β(1)
[
(m2

L)ii

]
= −

6
5
g2

1M2
1 − 6g2

2M2
2 −

3
5
g2

1S +
〈〈

Xτ

〉〉
for i = 3

(4.82)

β(1)
[
(m2

Ē)ii

]
= −

24
5
g2

1M2
1 +

6
5
g2

1S +
〈〈

2Xτ

〉〉
for i = 3

(4.83)

(4.84)

4.A.3 Two-loop level β-functions

β(2) [g1
]

=

(
−

26
5

Y2
t −

14
5

Y2
b −

18
5

Y2
τ +

199
25

g2
1 +

27
5
g2

2 +
88
5
g2

3

)
g3

1 (4.85)

β(2) [g2
]

=

(
−6Y2

t − 6Y2
b − 2Y2

τ +
9
5
g2

1 + 25g2
2 + 24g2

3

)
g3

2 (4.86)

β(2) [g3
]

=

(
−4Y2

t − 4Y2
b +

11
5
g2

1 + 9g2
2 + 14g2

3

)
g3

3 (4.87)
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β(2) [M1] =
1
5

[
52

(̃
at − Y2

t M1

)
+ 28

(̃
ab − Y2

b M1

)
+ 36

(̃
aτ − Y2

τ M1

)
+

796
5
g2

1M1 + 54g2
2 (M1 + M2) + 176g2

3 (M1 + M3)
]
g2

1

(4.88)

β(2) [M2] =

[
12

(̃
at − Y2

t M2

)
+ 12

(̃
ab − Y2

b M2

)
+ 4

(̃
aτ − Y2

τ M2

)
+

18
5
g2

1 (M1 + M2) + 100g2
2M2 + 48g2

3 (M2 + M3)
]
g2

2

(4.89)

β(2) [M3] =

[
8
(̃
at − Y2

t M3

)
+ 8

(̃
ab − Y2

b M3

)
+

22
5
g2

1 (M1 + M3) + 18g2
2 (M2 + M3) + 56g2

3M3

]
g2

3 (4.90)

β(2) [Yt] =

[ (
6
5

Y2
t +

2
5

Y2
b

)
g2

1 + 6Y2
t g

2
2 + 16Y2

t g
2
3 − 22Y4

t − 5Y4
b − 5Y2

t Y2
b − Y2

b Y2
τ

+
2743
450

g4
1 +

15
2
g4

2 −
16
9
g4

3 + g2
1g

2
2 +

136
45

g2
1g

2
3 + 8g2

2g
2
3

]
Yt

(4.91)

β(2) [Yb] =

[ (
4
5

Y2
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2
5

Y2
b +

6
5

Y2
τ

)
g2

1 + 6Y2
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2
2 + 16Y2
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2
3 − 5Y4

t − 22Y4
b − 5Y2

t Y2
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b Y2
τ − 3Y4

τ

+
287
90

g4
1 +
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2
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2 −
16
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1g

2
2 +

8
9
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2
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2
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(4.92)

β(2) [Yτ] =

[ (
−

2
5

Y2
b +

6
5

Y2
τ

)
g2

1 + 6Y2
τg

2
2 + 16g2

3Y2
b

− 9Y4
b − 10Y4
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b Y2
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1 +
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2 +
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Yτ

(4.93)

β(2) [at] =
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450
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2
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2
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2
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1

(
2
5
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4
5
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5
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16
9
g4

3 (ab − 4YbM3)

+ g2
1g

2
2 (ab − 2M1Yb − 2M2Yb) +
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b ãτYτ − 18̃abY3

τ − 50̃aτY3
τ

(4.96)

β(2) [µ] =

[ (
4
5

Y2
t −

2
5

Y2
b +

6
5

Y2
τ

)
g2

1 + 16
(
Y2

t + Y2
b

)
g2

3

− 9Y4
t − 9Y4

b − 3Y4
τ − 6Y2

t Y2
b +

207
50

g4
1 +

15
2
g4

2 +
9
5
g2

1g
2
2

]
µ

(4.97)

β(2) [b] =

[
8
5

(̃
at − Y2

t M1

)
g2

1 −
4
5

(̃
ab − Y2

b M1

)
g2

1 +
12
5

(̃
aτ − Y2

τ M1

)
g2

1

+ 32
(̃
at − M3Y2
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Xb − 4M3ãb + 4M2

3Y2
b

)
− 12̃atãb − 3Y2
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5

M2
1Y2

b

)
+ g2

2

(
6Xb − 24M2ãb + 24M2

2Y2
b

)
− 8̃abãτ − 16Y2

b Xb − 32̃a2
b − 8̃atãb − 2Y2

t Xb − 2Y2
b Xt − 2Y2

b Xτ − 2Y2
τXb

〉〉
for i = 3

(4.103)

β(2)
[
(m2

L)ii

]
=

621
25

g4
1M2

1 + 33g4
2M2

2 +
18
5
g2

1g
2
2

(
M2

1 + M2
2 + M1M2

)
−

6
5
g2

1S (2) +
3
5
g2

1σ1 + 3g2
2σ2

+

〈〈
g2

1

(
6
5

Xτ −
24
5

M1ãτ +
24
5

M2
1Y2

τ

)
− 12̃abãτ − 3Y2

b Xτ − 3Y2
τXb − 12̃a2

τ − 6Y2
τXτ

〉〉
for i = 3

(4.104)

β(2)
[
(m2

Ē)ii

]
=

2808
25

g4
1M2

1 +
12
5
g2

1S (2) +
12
5
g2

1σ1

+

〈〈
g2

1

(
−

6
5

Xτ +
24
5

M1ãτ −
24
5

M2
1Y2

τ

)
+ g2

2

(
6Xτ − 24M2ãτ + 24M2

2Y2
τ

)
− 24̃abãτ − 6Y2

b Xτ − 6Y2
τXb + −16̃a2

τ − 8Y2
τXτ

〉〉
for i = 3

(4.105)
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Appendix 4.B Note on Figures Showing Gauge Coupling Evolution
Here are documented several remarks on the figures displaying the renormalization group running of cou-
pling constants, i.e., Fig. 2.3 and Fig 4.4.

Evaluation for the Standard Model (Fig. 2.3) The gauge coupling running under the Standard Model is
employed in the MS scheme [39]. The RGEs for the gauge couplings ga are evaluated at the two-loop level.
The Yukawa couplings appearing in the RGEs are run under the one-loop level RGEs, which is sufficient to
obtain the gauge couplings at the two-loop level accuracy.

Input for the coupling constants are evaluated at the electroweak scale, i.e. at the Z-boson mass mZ . The
values are [90]

αs(mZ)MS = 0.1184, sin2 θw(mZ)MS = 0.2312, αEW(mZ)MS = 127.9, (4.106)

which results in g1 = 0.462, g2 = 0.652 and g3 = 1.22. Note that g1 =
√

5/3gY .
For precise calculation the Yukawa couplings should be also evaluated at mZ with the MS scheme.

However, in drawing Fig. 2.3, the constants are evaluated as

Yt ≈
mt(mt)MS

v
≈

160
174

, Yb ≈
mb(mb)MS

v
≈

4.18
174

, Yτ ≈
mpole
τ

v
≈

1.77682
174

. (4.107)

Therefore, precisely speaking, the running of Fig. 2.3 should be understood as a rough estimate; but this
simplification would be compensated with the large uncertainty of the MS top mass and the ineffectiveness
of Yb and Yτ in the evaluation.

Evaluation for the MSSM (Fig. 4.4) As we are not interested in the precise values, several approximations
for simplicity are employed in numerical evaluation for Fig. 4.4. First the procedure is summarized, followed
by the discussion on the approximations.

The ratio tan β := vu/vd and a SUSY scale MSUSY are set as input values. The running below MSUSY is
employed with the Standard Model MS RGEs, and that above MSUSY is with the MSSM DR RGEs. The
exchange at the SUSY scale is employed as

gMSSM
a = gSM

a , YMSSM
t = ySM

t / sin β, YMSSM
b = ySM

b / cos β, YMSSM
τ = ySM

τ / cos β. (4.108)

Input values at the electroweak scale are taken as the same as the Standard Model case discussed above.
One should first note that the renormalization schemes are different above and below the SUSY scale.

Nevertheless, the RGEs in the two schemes are the same at the one-loop level expression, and thus it is
expected that this approximation does not cause serious problem.

More important simplification is that no threshold corrections at MSUSY are introduced. Precisely speak-
ing, the matters decouple gradually during the running down of the mass scale Q, and thus the RGEs, or the
coefficients in the RGEs, depend on the scale Q. However, in usual calculations the RGEs are treated as if
they are independent of Q, and instead so-called “threshold corrections” are introduced at the SUSY scale
to compensate the effect from the matter decoupling. Therefore, ideally, we have to introduce the threshold
corrections into the conversion of Eq. (4.108); but as they depend on the SUSY mass spectrum, they are
simply not introduced in the numerical evaluation for Fig. 4.4.

Consequently, the running of Fig. 4.4 should be understood as a rough illustration of the gauge coupling
unification.

* * *

Nevertheless, the numerical evaluations in Chapter 5, where we utilize SOFTSUSY 3.3 [91] to calculate
the mass spectrum, the above subtle effects are introduced; i.e. the approximations discussed here are not
performed.
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Chapter 5

The MSSM with Vector-like Matters

Now we are ready to discuss the “V-MSSM,” an extension of the MSSM with a vector-like pair of super-
multiplets. This model [92] is characterized as

V-MSSM = MSSM +
(
10 + 10

)
, (5.1)

where 10 and 10 are the decuplet and the anti-decuplet of the SU(5) gauge group.
In this model the Higgs mass can be raised by the extra vector-like quarks [92]. There very large squark

masses of ∼ 10 TeV are not required to realize the 126 GeV Higgs boson even with a small mixing parameter
Xt as we will see in Sec. 4.2.4. This feature further allows us to utilize the SUSY as a solution to the muon
g−2 anomaly even in the simplest SUSY-breaking frameworks. One should also note that this model respects
the underlying SU(5) symmetry.

As the gauge-mediated SUSY-breaking (GMSB) scenario is very promising for its freedom from the
SUSY CP- and flavor problems, the V-MSSM with the GMSB is particularly interesting. In the GMSB
scenario, the slepton soft masses have the same origin as those of the squarks, and the A-terms are much
smaller than the soft mass terms. Therefore, under the MSSM framework, the GMSB cannot realize the
126 GeV Higgs mass with holding the SUSY explanation of the muon g−2 anomaly. Here, the “V” resurrects
the GMSB scenario. As the extra matters raise the Higgs mass, the mass of 126 GeV is realized without
exploiting heavy squark masses of order 1–10 TeV. It allows the lighter masses of the sleptons and gauginos
even under the GMSB framework, and with those masses the muon g − 2 discrepancy can be explained.

In chis chapter we will examine the V-MSSM, especially focusing on the combination with the simple
GMSB scenario, which we call “V-GMSB model.”

Historically, the V-MSSM was introduced in Ref. [92], where the increase of the Higgs boson mass was
unveiled. In Ref. [93] the model was examined; especially discussed were the infrared fixed point behaviour
of the couplings and decays of the extra fermions, which will in this dissertation be explained in Sec. 5.1
and Sec. 5.7 respectively.

Then author’s works follow.*1 In Ref. [15] the V-MSSM was firstly combined with the muon g − 2
problem. In Ref. [94] the LHC phenomenology is discussed, and Ref. [16] was devoted to the vacuum
stability condition, which we will see in Sec. 5.4. Ref. [95] was on constraints from SUSY searches at the
LHC, which corresponds to Sec. 5.6 of this dissertation.

* * *

In summary, notable features of this model are:

• It respects the underlying SU(5).

• It goes perturbatively up to the GUT scale.

• It allows us to solve the (g − 2)µ anomaly even with realizing mh ' 126 GeV.

After defining the model, we will see these advantages, and then discuss current constraints on this model.
*1This chapter is based on the works by Author, completed in collaboration with Dr. M. Endo, Prof. K. Hamaguchi, Mr. K. Ishikawa

and Dr. N. Yokozaki [15, 16, 94, 95]; a conference article by Author was published in proceedings [96].
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Table 5.1: The field content of the V-MSSM. The gauge indices are omitted, and subscripts i denote indices
for the three generations running from one to three. The gauge group is the same as the MSSM, and thus the
gauge fields are the same.

Matter fields (chiral multiplets)

field SU(3)color SU(2)weak U(1)Y R-parity
Qi 3 2 1/6 −

Ūi 3 1 −2/3 −

Ēi 1 1 1 −

D̄i 3 1 1/3 −

Li 1 2 −1/2 −

Hu 1 2 1/2 +

Hd 1 2 −1/2 +

Q′ 3 2 1/6 −

Ū′ 3 1 −2/3 −

Ē′ 1 1 1 −

Q̄′ 3 2 −1/6 −

U′ 3 1 2/3 −

E′ 1 1 −1 −

Gauge fields (vector multiplets)

gauge group field SU(3)color SU(2)weak U(1)Y

SU(3)color G 8 1 0
SU(2)weak W 1 3 0

U(1)Y B 1 1 0
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Section 5.1 The V-MSSM Model

5.1.1 Definition
The V-MSSM is an extension of the MSSM, where a vector-like pair of the SU(5) decuplets is introduced.
That is, it is defined with the same symmetry as the MSSM,

symmetry:
[
SU(3)strong × SU(2)weak × U(1)Y

]
× ZR

2 , (5.2)

and the extended field content,

fields: MSSM + 10 + 10 = MSSM +
(
Q, Ū′, Ē′

)
+

(
Q̄′,U′, E′

)
. (5.3)

The field content is summarized in Table 5.1.
These ingredients yield the following generic superpotential,

WMSSM = µHuHd − (Yu)i j HuQiŪ j + (Yd)i j HdQiD̄ j + (Ye)i j HdLiĒ j, (5.4)
Wextra = −Y ′HuQ′Ū′ + Y ′′HdQ̄′U′ + MQ′Q′Q̄′ + MU′Ū′U′ + ME′ Ē′E′, (5.5)

Wmixing = − (εu)i HuQiŪ′ −
(
ε′u

)
i HuQ′Ūi + (εd)i HdQ′D̄i + (εe)i HdLiĒ′, (5.6)

and SUSY-breaking terms

−Lsoft = −LMSSM
soft + m2

Q′
∣∣∣Q′∣∣∣2 + m2

Q̄′

∣∣∣Q̄′∣∣∣2 + m2
Ū′

∣∣∣Ū′∣∣∣2 + m2
U′

∣∣∣U′∣∣∣2 + m2
Ē′

∣∣∣Ē′∣∣∣2 + m2
E′

∣∣∣E′∣∣∣2
+

(
−a′HuQ′Ū′ + a′′HdQ̄′U′ + H.c.

)
+

(
bQ′Q′Q̄′ + bU′Ū′U′ + bE′ Ē′E′ + H.c.

)
+

[
− (λu)i HuQiŪ′ −

(
λ′u

)
i HuQ′Ūi + (λd)i HdQ′D̄i + (λe)i HdLiĒ′ + H.c.

]
.

(5.7)

Note that extra µ-terms, such as µiQiQ̄′, can be absorbed into the ε-terms, and similar absorption can be
operated for the SUSY-breaking terms.

However, this general Lagrangian has several problems. The principal one is on the mixing terms ε’s be-
tween the Standard Model fermions and the extra fermions. These mixings must be small enough, especially
for i = 1, 2, not to evade current experimental bounds on flavor violating processes. However, on the other
hand, absence of these mixings causes a problem that some of the extra fermions, especially the lightest
vector-like quark (t′1, which will be introduced soon), become stable. This is obviously disfavored because
we know our Universe has no heavy stable colored particles. Quantitative evaluation of these mixing param-
eters is interesting, and has great importance in search for the extra fermions at the LHC, which is discussed
in Sec. 5.7, because the decay branch of the fermions is determined by these mixings. Nevertheless, the
quantitative discussions are left as future works. In this dissertation we simply restrict the model to have no
mixings between the vector-like matters and the Standard Model fermions in the first and second genera-
tions, and to have small mixings between the vector-like matters and the third generation.*2 Furthermore the
SUSY-breaking mixing parameters λ’s are all ignored. These terms just govern the mixing between MSSM
sfermions and the extra sfermions, and are thus not important in phenomenological discussions.

Later we will impose one more condition that Y ′′ = 0; this is because the term Y ′′HdQ̄′U′ tends to reduce
the Higgs boson mass if tan β is as large as ∼ O(10). This mechanism is discussed in Sec. 5.1.3. For the
SUSY-breaking sector, similarly, a′′ = 0 is imposed.

Therefore, in the following discussions, we use the superpotential and the SUSY-breaking terms of

WVMSSM = WMSSM − Y ′HuQ′Ū′ + MQ′Q′Q̄′ + MU′Ū′U′ + ME′ Ē′E′

− εuHuQ3Ū′ − ε′uHuQ′Ū3 + εdHdQ′D̄3 + εeHdL3Ē′,
(5.8)

−LVMSSM
soft = −LMSSM

soft + m2
Q′

∣∣∣Q′∣∣∣2 + m2
Q̄′

∣∣∣Q̄′∣∣∣2 + m2
Ū′

∣∣∣Ū′∣∣∣2 + m2
U′

∣∣∣U′∣∣∣2 + m2
Ē′

∣∣∣Ē′∣∣∣2 + m2
E′

∣∣∣E′∣∣∣2
+

(
−a′HuQ′Ū′ + bQ′Q′Q̄′ + bU′Ū′U′ + bE′ Ē′E′ + H.c.

)
,

(5.9)

*2Discussions on the mixings with the first and second generation Standard Model quarks are found in Ref. [97] etc.
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where ε’s are assumed to be tiny; more precisely, they are small enough to avoid disfavored flavor mix-
ings, but not so feeble as the longevity of the extra matters does not cause phenomenological, especially
cosmological, problems.

We also define the following variables for later convenience:

A′ := a′/Y ′, A′′ := a′′/Y ′′, BQ′ := bQ′/MQ′ , BU′ := bU′/MU′ , BE′ := bE′/ME′ . (5.10)

* * *

Actually there remains one subtlety: CP-violating phases in the parameters. First, in the supersymmetric
sector, one phase cannot be removed from (Y ′,Y ′′,MQ′ ,MU′ ) because we already fixed the phases of Hu and
Hd to set vu and vd positive. This does not matter under the simplification Y ′′ = 0, but anyway we just assume
all of (Y ′,Y ′′,MQ′ ,MU′ ) are positive for simplicity. In addition, the SUSY-breaking terms yield many phases
as is the case of the MSSM, but we simply neglect all the complex phases in these terms.

5.1.2 Extra particles and their masses

In this model we have eight extra scalar particles and four extra fermions. Let us discuss the masses of the
particles at first.

The starting point of our discussion is Eqs. (5.8)–(5.9), but we restore Y ′′ for completeness. After the
electroweak symmetry breaking, where H0

u and H0
d acquire vacuum expectation values of vu = v sin β and

vd = v cos β, the fermionic mass terms in the Lagrangian are expressed as, with mixing terms,

−L ⊃
(
Q̄′u Ū′ t̄R

) MQ′ Y ′′vd 0
Y ′vu MU′ εuvu
ε′uvu 0 mt


Q′u
U′

tL


+

(
Q̄′d b̄R

) (−MQ′ 0
εdvd mb

) (
Q′d
bL

)
+

(
Ē′ τ̄R

) (ME′ εevd
0 mτ

) (
E′

τL

)
+ H.c.,

(5.11)

where tL,R, bL,R and τL,R are the Standard Model top, bottom, and tau, and their masses are denoted by mt,
mb and mτ, respectively. Similarly, the scalar mass terms are obtained as

− L ⊃
(
Q′∗u U′∗ Q̄′u Ū′

)
Mu


Q′u
U′

Q̄′∗u
Ū′∗

 +
(
Q′∗d Q̄′d

)
Md

(
Q′d
Q̄′∗d

)
+

(
E′∗ Ē′

)
Me

(
E′

Ē′∗

)
(5.12)

where the mass matrices are

Mu =


M

(1,1)
u Y ′∗vuMU′ + Y ′′vdM∗Q′ b∗Q′ a′∗vu − µY ′∗vd

Y ′vuM∗Q′ + Y ′′∗vdMQ′ M
(2,2)
u a′′∗vd − µY ′′∗vu b∗U′

bQ′ a′′vd − µ
∗Y ′′vu M

(3,3)
u Y ′∗vuMQ′ + Y ′′vdM∗U′

a′vu − µ
∗Y ′vd bU′ Y ′vuM∗Q′ + Y ′′∗vdMU′ M

(4,4)
u

 ,
Md =

M(1,1)
d −b∗Q′
−bQ′ M

(2,2)
d

 , Me =

(
M

(1,1)
e b∗E′

bE′ M
(2,2)
e

)
,
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and the diagonal components are

M(1,1)
u = |MQ′ |

2 + |Y ′vu|
2 + m2

Q′ +

(
1
2
−

2
3

sin2 θw

)
m2

Z cos 2β,

M(2,2)
u = |MU′ |

2 + |Y ′′vd|
2 + m2

U′ +

(
−

2
3

sin2 θw

)
m2

Z cos 2β,

M(3,3)
u = |MQ′ |

2 + |Y ′′vd|
2 + m2

Q̄′ +

(
−

1
2

+
2
3

sin2 θw

)
m2

Z cos 2β,

M(4,4)
u = |MU′ |

2 + |Y ′vu|
2 + m2

Ū′ +

(
2
3

sin2 θw

)
m2

Z cos 2β,

M
(1,1)
d = |MQ′ |

2 + m2
Q′ +

(
−

1
2

+
1
3

sin2 θw

)
m2

Z cos 2β,

M
(2,2)
d = |MQ′ |

2 + m2
Q̄′ +

(
1
2
−

1
3

sin2 θw

)
m2

Z cos 2β,

M(1,1)
e = |ME′ |

2 + m2
E′ +

(
sin2 θw

)
m2

Z cos 2β,

M(2,2)
e = |ME′ |

2 + m2
Ē′ −

(
sin2 θw

)
m2

Z cos 2β.

Note that we use the same symbols for both the scalars and the fermions, but it should not be confusing.
Finally, it is obvious from the above expressions that we have following particles as the extra matters:

scalars:
(̃
t′1, t̃

′
2 .̃t
′
3, t̃
′
4, b̃
′
1, b̃
′
2, τ̃
′
1, τ̃
′
2

)
, fermions:

(
t′1, t

′
2, b
′, τ′

)
, (5.13)

with the definition that t̃′1 < t̃′2 < t̃′3 < t̃′4 etc. in terms of the masses.

5.1.3 Higgs mass increase

Let us move on to the most important feature, the Higgs mass in the V-MSSM. We have discussed much
about this topic for the MSSM in Sec. 4.2.3, and the discussion given here is completely parallel to that.

As the effective potential has the same form as Eq. (4.32), the increase of the Higgs mass specific to the
V-MSSM at the one-loop level is given as, in the decoupling limit,

∆m2
h

∣∣∣∣1−loop

VMSSM
=

[
sin2 β

2

(
∂2

∂vu
2 −

1
vu

∂

∂vu

)
+

cos2 β

2

(
∂2

∂vd
2 −

1
vd

∂

∂vd

)
+ sin β cos β

∂2

∂vu∂vd

] 〈
∆V (1)

VMSSM

〉
, (5.14)

where

∆V (1)
VMSSM =

1
16π2

 ∑
t̃′1 ,̃t
′
2 ,̃t
′
3 ,̃t
′
4

F
(
m2

X

)
− 2

∑
t′1,t
′
2

F
(
m2

X

) , F(x) =
x2

4

(
log

x
Q2 −

3
2

)
. (5.15)

Here one should note that the other extra particles, b̃′i , τ̃
′
i , b′, τ′, have no contribution to the Higgs mass in the

absence of Y ′′. Therefore, with the masses we calculate in the last section, the increase of the Higgs boson
mass can be easily calculated numerically.

* * *

Let us assume MQ′ = MU′ (=: MF), m2
Q′ = m2

Q̄′
= m2

U′ = m2
Ū′

(=: M2
S − M2

F), and bQ′ = bU′ = 0, in
order to obtain an analytic expression of the increase. With a straightforward computation, one can obtain
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the following result:

∆m2
h

∣∣∣∣1−loop

VMSSM
=

3v2

4π2

{ (
Y ′ sin β

)4
log

M2
S

M2
F

−
1
6

5 − M2
F

M2
S

 1 − M2
F

M2
S

 +
Ξ′2

M2
S

1 − M2
F

3M2
S

−
Ξ′2

12M2
S


−

2
3

(
Y ′ sin β

)3 (Y ′′ cos β)
2 − M2

F

M2
S

 1 − M2
F

M2
S

 +
M2

F

M2
S

 Ξ′2

M2
S

+
Ξ′Ξ′′

2M2
S


−

(
Y ′ sin β

)2 (Y ′′ cos β)2

1 − M2
F

M2
S

2

+
M2

F (Ξ′ + Ξ′′)2

3M4
S


−

2
3

(
Y ′ sin β

)
(Y ′′ cos β)3

2 − M2
F

M2
S

 1 − M2
F

M2
S

 +
M2

F

M2
S

Ξ′′2

M2
S

+
Ξ′Ξ′′

2M2
S


+

(
Y ′′ cos β

)4
log

M2
S

M2
F

−
1
6

5 − M2
F

M2
S
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(5.16)

with

Ξ′ := A′ − µ cot β, Ξ′′ := A′′ − µ tan β. (5.17)

Especially, if we set Y ′′ = 0 as is mentioned above and employed in the following phenomenological dis-
cussions, the increase becomes

∆m2
h

∣∣∣∣1−loop

VMSSM
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Ξ′2

M2
S

1 − M2
F

3M2
S

−
Ξ′2

12M2
S

 . (5.18)

This is similar to the MSSM top–stop contribution (4.40); the difference simply comes from the fact that the
extra top-like quarks are vector-like. Therefore, the extra contribution is considered to be comparable to that
from the MSSM, and thus the Higgs mass is to be increased considerably.

It is interesting that, similarly to the MSSM case, a large ratio of MS /MF yields a larger increase in
the Higgs mass; the Higgs mass does not raised under MS = MF . Therefore, since the parameter MS is
characterized by MSUSY, a lighter MF gives a large contribution to the Higgs mass for a fixed MSUSY. We
will see this feature in Sec. 5.5.

5.1.4 Renormalization group flow
The unification of the gauge coupling constants is a virtue of the SUSY theories, which are gY =

√
3/5g1 for

U(1)Y , g2 for SU(2)weak and gs = g3 for SU(3)color, as is discussed in Sec. 4.4. Here the vector-like matters
modify the renormalization group equations (RGEs). When we extend the MSSM with n5 copies of (5 + 5)
and n10 copies of (10 + 10) supermultiplets, the one-loop level RGEs are modified to be

dg3

d ln Q
=

g3
3

16π2

[
−3 + (3n10 + n5)

]
, (5.19)

dg2

d ln Q
=

g3
2

16π2

[
1 + (3n10 + n5)

]
, (5.20)

dg1

d ln Q
=

g3
1

16π2

[33
5

+ (3n10 + n5)
]
. (5.21)

In the V-MSSM, where (n10, n5) = (1, 0), it is interesting that g3 does not run at the one-loop level.
Including the two-loop level RGEs, we obtain the renormalization group evolution as Fig. 5.1, where the
V-MSSM parameters are set as: (Y ′,Y ′′, tan β) = (1.0, 0, 20) at Q = MSUSY = 1 TeV. In the figure the
evolutions of Yt and Y ′ are drawn, but here one should be careful: the evolution of Y ′ significantly depends
on its value at the SUSY scale MSUSY, which we call Y ′SUSY. It is illustrated in Fig. 5.2. In the left figure
the renormalization group flow for Y ′ is drawn; we can see that a wide range of Y ′GUT, the value of Y ′ at the
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Figure 5.1: The renormalization group evolutions of the coupling constants in the V-MSSM. Here Y ′ is set
to be Y ′ = 1 at the SUSY scale MSUSY = 1 TeV. Other parameters are: Y ′′ = 0, tan β = 20. The drawing
procedure is similar to that summarized in the latter half of Appendix 4.B. The RGEs are summarized in
Appendix 5.A. The evolutions of g3, g2, and g1 are drawn with black lines (from top to bottom); that for Yt

is with a red line, and for Y ′ is with a turquoise blue line. One should be careful that, as we will observe
in Fig. 5.2, the running of Y ′ is sensitive to its value at the SUSY scale, Y ′SUSY, for its infrared fixed point
behaviour. Moreover, the value of Y ′SUSY affects the evolutions of the other Yukawa coupling constants; their
flows also significantly depend on Y ′SUSY. However, as the Yukawa couplings appear in the RGEs of the
gauge coupling constants only at the two-loop level, the renormalization flows of the gauge couplings are
less affected by Y ′SUSY.

GUT scale MGUT, converges at the low-energy scale to Y ′SUSY ∼ 1. This is called “quasi infrared fixed point
behaviour,” and the fixed point is Y ′ ∼ 1 [93]. In the right figure Y ′SUSY is drawn as a function of Y ′GUT.

The above discussion assumes Y ′′ = 0, but actually, in the presence of Y ′′, it behaves in similar manner;
moreover, Y ′′ also has a quasi infrared fixed point. This is shown in Fig. 5.3; Y ′SUSY in the left figure and
Y ′′SUSY in the right figure are plotted as a function of (Y ′GUT,Y

′′
GUT). We can see that the both have quasi

infrared fixed points, and respective behaviour is almost independent of the value of the other.
It is also known [15, 93] that At, A′ and A′′ among the scalar trilinear couplings perform the infrared

fixed point behaviour. To illustrate this feature, the CMSSM scenario is utilized, which has the following
five parameters: (m0,M1/2, tan β, A0, sgn µ). Fig. 5.4 shows the infrared fixed point behaviour of At and A′

in the V-MSSM with Y ′′ = A′′ = 0. Here (m0,M1/2) = (0, 1.5 TeV) is set at the GUT scale, and A′(= A0)
at the GUT scale is used as an input (horizontal axis). The dependence is drawn for three values of Y ′. For
any input value of At and A′ at the GUT scale, At/MQ3 and A′/MQ′ converge to ∼ −0.5 at the SUSY scale
MSUSY := 1 TeV as long as Y ′ & 1, which is nothing but the infrared fixed point behaviour. Fig. 5.5 is that
for A′′ in the V-MSSM; here Y ′ = A′ = 0, and A′′ = A0 are the input values. We can easily see infrared fixed
point behaviour, and it is similar to that of A′.

5.1.5 Contribution to the muon g − 2
The MSSM parameters relevant to the muon g−2 are affected by the extra matters; e.g. from the characteristic
behaviour of g3 during the renormalization group running. Thus the SUSY contribution to the muon g − 2,
which is reviewed in Sec. 4.3, is quantitatively modified.

However, it does not change qualitatively. Because the extra particles are assumed to have no direct cou-
plings with muons, their contribution appears only as higher-order loop level corrections with the assumed-
to-be-small mixing parameters. Moreover, the particles are expected to be heavy for the SUSY-invariant
mass MQ′,U′,E′ and the soft masses. Therefore, we can use the same formulae as in Sec. 4.3 for the V-MSSM.
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Figure 5.2: (left) Renormalization group flow of Y ′ in the V-MSSM. We can see that, for a wide range of Y ′

at the GUT scale (which let us say Y ′GUT), Y ′ falls into ∼ 1 at the low-energy scale (which let us say Y ′SUSY).
In other words, the renormalization group flow of Y ′ severely depends on Y ′SUSY. This feature, or the quasi
infrared fixed point behaviour, can be obvious in the right figure. (right) The value of Y ′SUSY as a function of
Y ′GUT. Here, the GUT scale is defined with the condition g1(MGUT) = g2(MGUT). In both figures, the SUSY
scale is set to be MSUSY = 1 TeV, and tan β = 20 and Y ′′ = 0 are used. Details of the evaluation procedure
are summarized in Appendix 4.B.
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Note that mQ3 and mQ′ is the square-root of the SUSY-breaking soft masses squared. From these figure, it
is obvious that both A′ and At perform the quasi infrared fixed point behaviour if Y ′ works effectively. The
infrared fixed points sit at At ∼ −0.5mQ3 and A′ ∼ −0.5mQ′ , which means the stop mixing is rather small in
the V-MSSM framework (cf. Sec. 4.2.4).
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Section 5.2 On the Choices We Have Done
Now we have introduced the V-MSSM. In the above introduction one might wonder why we have chosen
(10 + 10) pair, and why we will set Y ′′ = 0. For such curious readers, before going into the V-GMSB model,
the answers for these questions are provided here.

5.2.1 Why did we choose 10 + 10?
Extensions of the MSSM with complete SU(5) multiplets are preferred, because there the SU(5)-GUTs are
respected and the gauge coupling unification is realized. The vector-like insertions, such as 5+5 and 10+10
have a virtue for vanishment of gauge anomalies.

Then one may consider that we can introduce a vector-like pair 5 + 5 instead as extra matters. This does
not work, because no Yukawa interactions can be additionally introduced.

Actually an alternate is
(
5 + 5

)
+

(
1 + 1

)
model, or LND model [93]:

5 =
(
L′ + D̄′

)
, 5 =

(
L̄′ + D′

)
, 1 = N̄′, 1 = N′; (5.22)

WLND = ML′L′L̄′ + MD′ D̄′D′ + MN′ N̄′N′ + Y ′HuL′N̄′
(
+Y ′′HdL̄′N′

)
. (5.23)

As is obvious, the structure of the Lagrangian is almost the same as the V-MSSM. This model corresponds
to (n10, n5) = (0, 1) in Eqs. (5.19)–(5.21), and the gauge coupling unification does realize. One weakness
of this model is that the Higgs mass increase is smaller than the V-MSSM. The effective Higgs potential is
almost the same as that in the V-MSSM, but as the leptons, not quarks, form the Yukawa coupling, the color
factor 3 in the superpotential lacks in this case, i.e.,

∆m2
h

∣∣∣∣1−loop

LND
=

1
3

∆m2
h

∣∣∣∣1−loop

VMSSM
≈
v2Y ′4 sin β4

4π2
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−
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F
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S

 1 − M2
F

M2
S

 + · · ·

 . (5.24)

Furthermore, it is known that the coupling Y ′ has also a quasi infrared fixed point as well as Y ′, which
however is slightly smaller: Y ′ { 0.765 [93]. As the mass increase is proportional to Y ′4, this is crucial.
Therefore, although it is possible to realize mh = 126 GeV with a large MS /MF , we do not consider this
model in this dissertation.

On the other hand, we can consider adding more vector-like pairs: 3n10 + n5 > 3. In this case, however,
the gauge coupling g3 might blow up before the grand unification; as is shown in Fig. 5.1, g3 increases
during the running up to the GUT scale in the V-MSSM. If we add more matters, the RGE for g3 becomes
positive even at the one-loop level (See: Eq. (5.19)). Therefore, this direction is not so promising as is
naively expected. Note that the upper bound on (3n10 + n5) is dependent on other MSSM parameters, in
particular the SUSY scale MSUSY (cf. Fig. 4.4).

It should be also mentioned here that the MSSM with four fermion generations, which can be written as
“MSSM+10 + 5”, is excluded by the Higgs boson searches [98] (cf. Ref. [99]).

5.2.2 Why is Y′′ = 0 required?
From the expression (5.16), one may notice that the contribution from Y ′′ to the Higgs boson mass is similar
to that from Y ′, and thus may wonder why we set Y ′′ = 0. This is due to a large tan β, which is preferred to
keep the SUSY explanation of the muon g−2 problem, and a large µ-parameter; as we will see in Sec. 5.3.3,
the µ-parameter is raised by the vector-like quarks during the renormalization group running and thus tends
to be large in the V-MSSM.

Under a large tan β, the mass increase is expanded as

∆m2
h

∣∣∣∣1−loop

VMSSM
=

3v2

4π2

{
Y ′4 log

1
r2 −

1
6

[(
5 − r2

) (
1 − r2

)
Y ′4 + 2(Y ′r)2(Y ′′ξ)2 +

1
2

(Y ′′ξ)4
]

+ O

(
1

tan β

)}
,

(5.25)
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where we defined r := MF/MS (which is usually smaller than one) and ξ := µ/MS ; we set A′ = A′′ = 0 here
for simplicity. From this expression it is understood that, especially with a large µ-parameter, the interaction
Y ′′HdQ̄′U′ just decreases the Higgs mass to disgrace the model.

This is the reason we simply employ an unnatural simplification of Y ′′ = 0; studies with Y ′′ , 0 are left
as future works.

Section 5.3 V-GMSB Model
Among various SUSY-breaking scenarios, the gauge-mediated SUSY-breaking (GMSB) scenario [100] is
notably attractive because of natural suppressions of dangerous flavor-changing processes and CP-violations
which can appear in soft SUSY-breaking terms. However, the GMSB under the MSSM faces the difficulty
of explaining the mass of the Higgs boson in the range of 125–126 GeV. This is because the scalar trilinear
couplings, Au,d,e, arise in two-loop level quantum correction and thus are generally small in the GMSB
scenario; consequently the mixing in the stop sector, characterized by Xt in Eq. (4.40), is suppressed, and we
are forced to set the SUSY scale MSUSY to be considerably large. Then the SUSY explanation for the muon
g − 2 problem is spoiled, and the SUSY loses one sales point.

In the V-MSSM, the extra vector-like matters efficiently increase the Higgs boson mass to 126 GeV with-
out exploiting large MSUSY. This was qualitatively discussed in Sec. 5.1.3, and will be confirmed quantita-
tively soon. Thus the GMSB scenario with the V-MSSM is very attractive and phenomenologically viable;
the V-MSSM resurrects the GMSB scenario. We will see that the parameter space has a region where the
Higgs boson mass 125–126 GeV is achieved and the muon g− 2 is consistent with the experimental value at
the 1–2σ level.

* * *

We adopt the simplest GMSB scenario as the SUSY-breaking framework of the V-GMSB model. This
framework is parameterized by the messenger scale Mmess, the soft mass scale Λ, the messenger number N5,
the ratio of the Higgs vacuum expectation values tan β = vu/vd, and the sign of the µ-parameter sgn µ.

As we saw in Sec. 5.1.4, the gauge coupling constant g3 is marginal to blowing up; as the messengers also
worsen the situation, we set N5 = 1 in order to preserve the perturbativity of the gauge coupling constants
up to the GUT scale. We also set µ > 0; note that we have taken the convention under which the gaugino
masses are positive: Ma > 0; thus this choice results in positive contribution to the muon g− 2 (cf. Sec. 4.3).

Here are summarized the parameters of the V-GMSB model and our setting:(
Λ, Mmess, tan β, sgn µ = +1; MQ′ = MU′ = ME′ (=: MV ), Y ′ = 1.0, Y ′′ = 0

)
, (5.26)

where Y ′ is set at the messenger scale Mmess, while MV is an input at the low-energy scale MSUSY, which is
defined as MSUSY := √mt̃1 mt̃2 . Note that the SUSY-breaking parameters specific to the V-GMSB models, A′

and BQ′,U′,E′,, are not input parameters but yielded by the messengers.

5.3.1 SUSY-breaking
In the V-GMSB model, the soft SUSY-breaking terms are induced radiatively via the messenger fields as in
the ordinary GMSB scenario. The superpotential of the messenger sector is

Wmess = (MD + FDθ
2)ΨDΨ̄D + (ML + FLθ

2)ΨLΨ̄L, (5.27)

where MD (ML) is the supersymmetric mass, and FD (FL) is the SUSY-breaking F-term of the colored
(non-colored) messengers. The messenger scale is taken as Mmess := MD = ML, and the SUSY-breaking
F-terms are as FD = FL. Thus, the soft SUSY-breaking parameters are characterized by the two parameters,
Mmess and Λ := FD/MD = FL/ML, at the messenger scale. Precisely speaking, the relations MD = ML

and FD = FL do not hold generally at the messenger scale due to the renormalization group evolution, even
if we set MD = ML and FD = FL at the GUT scale. Even though, Λ is almost unchanged during the
renormalization group running, and hence, the soft mass parameters are not significantly changed under this
effect. Finally, these messenger fields set the soft SUSY-breaking parameters at the messenger scale Mmess,
and the parameters are evolved down to the weak scale with the RGEs summarized in Appendix 5.A.



54 Dissertation / Sho Iwamoto
M

a
ss

 (
G

e
V

)

0

500

1000

1500

2000

2500

β : 140TeV   Mmess : 106GeV   tan   : 20 Λ

h

‒H A H

g~

0

1
χ∼

0

2
χ∼ 

‒
1
χ∼

0

4
χ∼ 

0

3
χ∼ 

‒
2
χ∼

L
q~

R
q~

Ll
~

Rl
~

2
b
~

 
2

t
~

1
t
~1
b
~

2
τ∼

τν
∼

1
τ∼

h

‒H A H

g~

0

1
χ∼

0

2
χ∼ ‒

1
χ∼

0
4
χ∼ 0

3
χ∼ ‒

2
χ∼

L
q~

R
q~

Ll
~

Rl
~

2b~ 2t
~

1t
~1b~

2τ
∼

τν
∼

1τ
∼

1t’

2t’
’τb’ 

’1t
~

’1b~’ 2t
~ ’3t

~

’4t
~

’2b~

’2τ
∼

’ 1τ
∼

M
as

s (
G

eV
)

0

500

1000

1500

2000

2500

β : 140TeV   Mmess : 106GeV   tan   : 20   Mvector : 1000GeVΛ

Figure 5.6: The mass spectra of the GMSB (left) and the V-GMSB (right). The GMSB parameters are
(Λ,Mmess, tan β,Nmess) = (140 TeV, 106 GeV, 20, 1) in both cases. The SUSY-invariant masses of vector-like
fields are set as MQ′ = MU′ = ME′ = 1 TeV for the V-GMSB model. The sfermions of the first and the
second generations are labeled with q̃L, q̃R, l̃L, and l̃R, where the left–right mixings are ignored.

5.3.2 Characteristics of the V-GMSB model

As is discussed in Sec. 5.1.4, the couplings Y ′, At and A′ show quasi infrared fixed point behaviour in the
V-MSSM scenario. However, in the V-GMSB model, the situation is slightly different; since the parameter
is input at the messenger Mmess, the renormalization group evolution does not work effectively enough to
drive them to the fixed points. This is important for the Higgs boson mass; the Higgs boson mass decreases
as Y ′ is reduced away from Y ′ = 1 at the messenger scale. Similarly, At and A′ are much smaller than the
fixed point value especially for smaller Mmess as the usual GMSB models. This disables the Higgs boson
mass to be enhanced by the trilinear couplings, but the constraint from the branching ratio of the b → sγ
decay is safely satisfied, which is serious in so-called the mh-max scenario of the CMSSM scenarios [14].

Another characteristic feature of the V-GMSB model is the size of the Higgsino mass parameter µ at the
SUSY scale. It becomes very large compared to the usual GMSB models. This is because the vector-like
matters contribute to the RGE of the up-type Higgs mass squared, which is approximately given as

dm2
Hu

d ln Q
'

dm2
Hu

d ln Q

∣∣∣∣∣∣∣
MSSM

+
3

8π2 Y ′2
(
m2

Q′ + m2
Ū′ + m2

Hu
+ |A′|2

)
, (5.28)

where Q is the renormalization scale (cf. Appendix 5.A). This contribution, which originates in the vector-
like matters, gives a large negative contribution to the up-type Higgs mass squared m2

Hu
. It is as large as that

from the stop, since Y ′ ' 1. Hence, the electroweak symmetry breaking conditions require a large value of
µ. Consequently, the next-to-lightest neutralino χ̃0

2 and the lightest chargino χ̃±1 tend to consist of the wino,
and the mass of the lighter stau is likely to be small, because the left-right mixing of the stau mass matrix,
which is proportional to µ tan β, becomes large. Especially when tan β is large, the lighter stau becomes the
NLSP. These features can be found in the mass spectrum discussed below.
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5.3.3 Mass spectrum

In this subsection, we discuss the mass spectrum of the V-GMSB. In the numerical analysis we utilized
SOFTSUSY 3.3 [91] and FeynHiggs 2.9 [101] to calculate the mass spectrum of the SUSY particles and
the Higgs sector. They were modified to take the effects from the extra vector-like matters into account.

A typical mass spectrum is displayed in Fig. 5.6, where the V-GMSB result is compared to that of the
ordinary GMSB. Here and hereafter, we assume a common SUSY-invariant mass for the vector-like fields,
MV = MQ′ = MU′ (= ME′ ). As is explained just above, the heavier chargino χ̃±2 and the heavier two
neutralinos χ̃0

3,4 mainly consist of the Higgsino, and are much heavier than the ordinary case. In addition,
it is found that the squarks become heavier; this is because the gauge coupling g3 stays large during the
renormalization group evolution. On the contrary, a ratio of the gaugino masses is less affected by the
extra matters. This is because the ratios of Ma/αa, where Ma are the gaugino masses, are fixed during the
renormalization group evolution at the one-loop level, and the gauge coupling constants ga are (should be)
set at the low-energy scale. The masses of the vector-like squarks are close to those of stops and sbottoms
up to the SUSY-invariant mass, because they have the same quantum numbers as the corresponding squarks.

* * *

Let us explain how the mass spectrum is evaluated in SOFTSUSY and what kinds of modifications are ap-
plied. First of all, the program estimates the Standard Model gauge couplings αa(mZ) and Yukawa couplings
Yi(mZ) at the scale of the Z-boson mass mZ [102]. They are evolved upwards from mZ to the messenger scale
Mmess with solving the V-GMSB RGEs. In the numerical calculations, the SOFTSUSY package was modified
to include the two-loop level RGEs of the V-GMSB model. It is also important to include threshold correc-
tions and self-energy corrections of vector-like matters to the gauge coupling constants at the mZ scale, since
they can give ∼ 10% contributions especially to the coupling constant g3. Those corrections also affect the
gaugino masses and the scalar masses squared generated at Mmess through the gauge coupling constants.

Next, the soft SUSY-breaking parameters are provided by the messenger loops at Mmess. The extra
Yukawa couplings are also set at the scale, which are Y ′(Mmess) = 1 and Y ′′(Mmess) = 0. The gauge,
Yukawa and soft parameters are evolved with the V-GMSB RGE down to the SUSY scale, MSUSY, which is
determined by the stop masses as MSUSY =

√mt̃1 mt̃2 .
The masses of the superparticles are evaluated including the whole one-loop level corrections to the self-

energies within the MSSM. The pole mass of the gluino also receives a correction from vector-like matter
loops. However, this turns out to be around a few GeV, since the masses of the vector-like matters are
close to MSUSY, and their contributions to the self-energy are relatively small. Similarly, contributions of the
vector-like fields to the electroweak gaugino masses are safely neglected.

Then, the Higgs potential is investigated, which determines the Higgs boson mass and the µ-parameter.
The MSSM part of the Higgs boson mass is evaluated at the two-loop level by the FeynHiggs package [101].
The contribution from the vector-like matters is estimated with the one-loop level effective potential dis-
cussed in Sec. 5.1.3, where one-loop level contributions from the vector-like matters are taken into account,
and is added to the MSSM Higgs boson mass in quadrature to obtain the V-MSSM Higgs boson mass. The
two-loop level contribution of the vector-like matters can shift the Higgs boson mass by ∼ 1–10 GeV, study
for which is reserved for future works. On the other hand, the µ-parameter is less affected by the vector-like
matters except for the renormalization group evolution (5.28), because tree-level contribution to µ is fairly
large in the V-MSSM.

Section 5.4 Vacuum Stability Bound

One of the most severe constraints on the V-GMSB model is the vacuum stability bound [16]. When tan β
is large, the large trilinear coupling of the staus and the Higgs boson can generate charge breaking global
minima and destabilize the electroweak symmetry breaking vacuum [103]. Therefore, tan β has a tight upper
bound for given Mmess and Λ in the GMSB framework from the condition that lifetime of the proper vacuum
must be longer than the age of our Universe.
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Let us see this condition in detail [104]. The MSSM (and the V-MSSM) Higgs potential together with
the stau sector is expressed as (cf. Eq. (4.8))
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Note that here the one-loop level correction to the quartic coupling, which actually can be found in Eq. (4.32):

〈
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〉
{

3Y4
t

8π2 log
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, (5.30)

is included as δH , whose definition is

δH :=
3
π2

Y4
t

g2
Y + g2

2

log
mt̃

mt
. (5.31)

The terms with H0
d are also ignored because

〈
H0

d

〉
is tiny in our concerning large tan β region, although they

give considerable corrections [105].
Hereafter we simply assume µ ∈ R as well as Yτ > 0. Expanding the expression with H0

u = v + h, we
obtain the following mass terms for the stau:
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The vacuum stability is at classical level understood that the eigenvalues of the stau mass matrix must be
positive [104]; that is,

(mτ · µ tan β)2 <
1
2

(
2m2

L3
+ 2m2

W − m2
Z

) (
m2

Ē3
+ m2

Z − m2
W

)
. (5.33)

This condition is certainly not sufficient because it just asserts that “our” vacuum, the EWSB vacuum, is a
local minimum. The condition which must hold is that the EWSB vacuum is the global minimum, or, as
a more weaker condition, it is just a local minimum but the transition rate to other minima, especially the
global minimum, is longer than the age of our Universe. For the latter case, the transition rate is estimated
by a semi-classical method, searching for so-called bounce solutions [106]. In Ref. [104], an approximate
formula for the bound on µ tan β is obtained by using multi-dimensional bounce configurations, including
top–stop radiative corrections to the Higgs potential.

* * *

In a work of Author*3, Ref. [16], this vacuum stability condition on the V-GMSB model is discussed,
where a fitting formula given in Ref. [104, v1 on arXiv] was utilized:

µ tan β . 76.9
√

mL3 mĒ3
+ 38.7

(
mL3 + mĒ3

)
− 1.04 ×104 GeV. (5.34)

Very recently, however, the fitting formula was revised as follows [104, v2 on arXiv]:

µ tan β < 213.5
√

mL3 mĒ3
− 17.0

(
mL3 + mĒ3

)
+ 4.52 ×10−2 GeV−1

(
mL3 − mĒ3

)2
− 1.30 × 104 GeV. (5.35)

In these expressions, mL3 and mĒ3
are the square-root of the SUSY-breaking soft mass squared for, re-

spectively, the left- and the right-handed stau. Moreover, also very recently, the vacuum stability bound
was reanalyzed with including effects of a radiatively-corrected tau Yukawa coupling [105]. The results in
Ref. [105], however, cannot be directly applied to the V-GMSB model, because the masses and the mixing
angle of the staus are different from those in Ref. [105].

*3Done in collaboration with Dr. M. Endo, Prof. K. Hamaguchi, and Dr. N. Yokozaki.

http://arxiv.org/abs/1011.0260v1
http://arxiv.org/abs/1011.0260v1
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The above result (5.35) is obtained in the limit of zero temperature, but thermal effects may tighten the
bound [107, 108]. The thermal decay rate of a false vacuum is usually estimated with following the method
in Ref. [109]. Evaluating the Higgs potential at the one-loop level with including the thermal effect coming
from the top quark and the electroweak gauge bosons, one can find that the stability bound can become more
severe by ∼ 10% than the zero temperature result for a small stau mass region [107]. In addition to the
thermal corrections, one should note that the proper vacuum may be required to be the global minimum if
the vacuum expectation values of the scalar fields stayed away from the ordinary ones in the early universe.

Considering all these various factors together, this dissertation uses the bound of Eq. (5.35) to draw the
upper-bound, and also the bound but weakened by 10% is drawn for reference use.

* * *

Finally, let us touch on another possibility of the vacuum instability. In a class of SUSY models, the
trilinear coupling of the top squark is predicted to be large in order to raise the Higgs mass. Such a large
trilinear coupling may spoil the vacuum stability in the stop–Higgs plane similarly to the stau–Higgs plane
discussed above. The meta-stability bound was studied in Ref. [110] and obtained as

A2
t + 3µ2 < 7.5

(
m2

t̃L
+ m2

t̃R

)
. (5.36)

However, as the A-terms are not so large in the V-GMSB model as ordinary GMSB models, this condition
does not appear in our discussion.

Section 5.5 Higgs mass, muon g − 2 and vacuum stability in V-GMSB
Now we are ready to discuss numerical results: we are about to see that the V-GMSB model explains the
126 GeV Higgs boson mass together with explaining the muon g − 2 anomaly.

The current status of the V-GMSB model is summarized in Fig. 5.7, together with the current LHC
bounds discussed in Sec. 5.6. (See also Fig. 5.12.) The mass spectrum including the Higgs mass is calculated
with the procedure summarized in Sec. 5.1.2, where SOFTSUSY 3.3 [91] and FeynHiggs 2.9 [101] are
utilized. The muon g − 2 is calculated with FeynHiggs. Y ′ = 1.0 is set at the messenger scales, MQ′ =

MU′ = ME′ =: MV is set at the low-energy scale, and Y ′′ = A′′ = 0 is assumed. The values of important
Standard Model parameters are set as αs(mZ) = 0.1184 and mt = 173.5 GeV.

In Fig. 5.7, contours of the Higgs boson mass and the muon g − 2 are drawn in the (mg̃, tan β)-plane for
the messenger scales of (a) Mmess = 1010 GeV, (b) 108 GeV, and (c) 106 GeV. Here, mg̃ is the gluino pole
mass, which is mainly determined by Λ, and tan β is an input evaluated at the electroweak scale as usual.
As the manner discussed in Sec. 5.4, the vacuum stability bound is imposed with Eq. (5.35). In each of the
figures, it is drawn with the blue dot-dashed line; the region above the line is disfavored. Above the line, the
blue double-dotted long-dashed line is drawn as the vacuum stability condition which is weakened by 10%.
The black solid and dashed lines show the LHC constraints, which we will discuss in detail in Sec. 5.6. The
NLSP is the lightest neutralino below the light blue line, and the lighter stau above the line; the LSP is the
gravitino in this model. In the gray shaded region, SOFTSUSY fails to calculate the stau mass. Note that such
a parameter region is experimentally excluded as long as the NLSP (the lighter stau) is long-lived.

In the green bands in Figs. 5.7(a)–(c), the Higgs boson mass takes a value of 125–126 GeV for reference
values of SUSY-invariant mass of the vector-like matter of MV = 1 TeV and 1.2 TeV. The Higgs boson
mass increases as the vector-like matter becomes lighter (cf. Sec. 5.1.3). Actually, the Higgs boson mass of
125–126 GeV can be realized in the whole parameter region of Fig. 5.7 by changing the vector-like matter
mass. For fixed MV , the Higgs boson becomes lighter when the gluino mass is smaller, because the radiative
corrections to the Higgs potential from stops and vector-like stops decrease. On the other hand, for higher
messenger scale, the stop mass becomes larger during the renormalization group evolution, and thus the
Higgs boson mass of 125–126 GeV is realized with a smaller gluino mass.

On the contrary to the mass of the Higgs boson, masses of the MSSM superparticles and the SUSY
contributions to the muon g − 2 are not sensitive to MV . We have checked that the MSSM superparticle
masses change only by . 2% when MV is varied from 500 GeV to 1 TeV, and the muon g − 2 changes by
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Figure 5.7: (a)–(c) Contours of the Higgs boson mass, the muon g − 2 and the LHC constraints in the V-
GMSB model are shown for (a) Mmess = 1010 GeV, (b) 108 GeV, and (c) 106 GeV. In the green bands,
the Higgs boson mass is 125–126 GeV for MV = 1 GeV and 1.2 GeV. The yellow (orange) regions show
the parameter spaces where the muon g − 2 discrepancy is explained within 2σ (1σ)-level by the SUSY
contribution. The light blue lines indicate mχ̃0

1
= mτ̃1 ; the NLSP is the lightest neutralino below the lines,

and the lighter stau above them. The regions above the blue dot-dashed lines are constrained by the vacuum
stability condition (5.35); as a reference the bound which is weakened by 10% is drawn with the blue double-
dotted long-dashed lines. The LHC constraints, discussed in Sec. 5.6, are drawn with the black solid lines
without theoretical uncertainties, where the regions left to the lines are excluded. The black dashed lines
indicate the LHC bounds with theoretical uncertainties: 35% error of the production cross section is adopted
for the neutralino NLSP, and 2% error in terms of the stau mass is for the stau NLSP. The gray shaded
regions are excluded by the failure of the SOFTSUSY calculation. (d) Masses of the SUSY particles under
Mmess = 106 GeV. The green contours are for the lighter stau, and the red lines for the lightest squark among
the first two generations. The light blue line indicates mχ̃0

1
= mτ̃1 .
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less than 1%, correspondingly. In the figures, we fix MV = 1 TeV in the calculations of all the quantities
except for the Higgs boson mass.

In the yellow (orange) regions in Figs. 5.7(a)–(c), the muon g− 2 discrepancy, Eq. (2.24), is explained at
the 2σ (1σ) level, i.e.,

10.1 ×10−10 < [∆aµ]SUSY < 42.1 ×10−10 in the yellow regions,

18.1 ×10−10 < [∆aµ]SUSY < 34.1 ×10−10 in the orange regions.

These regions are sensitive to both the gluino mass, i.e., the soft mass scale MSUSY, and tan β (cf. Sec. 4.3).
It should be stressed that the gluino mass, and thus MSUSY, has an upper bound for successful explanation
of the muon g − 2 under the vacuum stability condition, which we will discuss again in Sec. 5.6.4 (see
Fig. 5.12). This bound becomes tighter for a larger Mmess. The principal reason is that the renormalization
group evolution, which raises the soft scalar masses during the running down from the messenger scale to
the low-energy scale, works more significantly under a larger Mmess. In addition, as the gauge couplings
are larger at higher energy scales in this model (cf. Fig. 5.1), a larger Mmess results in slightly heavier soft
scalar masses at Mmess. Thus heavier squarks and sleptons are provided for a larger Mmess, and the SUSY
contributions to the muon g − 2 are suppressed, in a fixed value of the gluino mass.

As we shall see in the next section, LHC searches for the SUSY particles depend on the species of the
NLSP. In Figs. 5.7(a)–(c), the NLSP is the lightest neutralino (the lighter stau) below (above) the light blue
lines. The stau NLSP region becomes smaller as Mmess increases, for the renormalization group running,
which increases the sfermion masses relative to those of the gauginos, works more significantly. For SUSY
searches at the LHC, the masses of the gluino, squarks, and the stau are particularly important. For illus-
tration, we show in Fig. 5.7(d) the masses of the lighter stau τ̃1 and the lightest squark among the first two
generations with green and red lines, respectively, for Mmess = 106 GeV. The squark mass is almost inde-
pendent of tan β, since it is governed by the strong interaction. On the other hand, the stau mass, which
determines the LHC constraint in the parameter region with the stau NLSP, depends on the gluino mass (the
soft mass scale), and on tan β through the tau Yukawa coupling Yτ ≈ (mτ/v) tan β.

An interesting feature of the V-GMSB model is that the mass parameter MV should be . 1.2 TeV in
order to explain the muon g − 2 discrepancy at the 2σ-level together with the 126 GeV Higgs boson. This
behaviour can be understood from Eq. (5.18); for larger MF(= MV ) in the expression the SUSY-breaking
mass terms, MS must be larger to realize enough increase, which means the masses of the sleptons and the
gauginos get larger, and the shift of the muon g − 2 decreases. Therefore, in this context the vector-like
quark mass should be . 1.2 TeV, and this fact makes searches for vector-like quarks very interesting. We
will discuss this topic in Sec. 5.7, after the discussion on the LHC bounds drawn in the figures.

Section 5.6 LHC Bounds on the V-GMSB Model
In this section the constraints on the V-GMSB model from LHC SUSY searches are discussed. Actually
the bounds are already shown in Fig. 5.7; here the procedure to obtain those bounds and interpretations of
them are provided. The V-GMSB model is also constrained by searches for the vector-like quarks, but the
constraints are discussed in Sec. 5.7.

5.6.1 Overview

In the V-GMSB model, the gravitino is the LSP, and collider signatures are determined by species and the
lifetime of the NLSP. As discussed in the previous section, the NLSP is either the lightest neutralino or the
lighter stau in the V-GMSB model, which are respectively realized below and above the light blue lines in
Fig. 5.7. Let us summarize the cases.

Long-lived Neutralino NLSP: The promising signature is multi-jets plus large missing energy (�ET) yielded
from pair-production of colored particles, where the multi-jets are provided by cascade decays of the
colored particles and the missing energy is from the NLSPs.
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The ATLAS collaboration reported a search for this channel using the data corresponding to an inte-
grated luminosity of 5.8 fb−1 obtained at ECM = 8 TeV in Ref. [81], and obtained a lower bound on
the gluino mass for the case where the squarks are heavy, which is expected in the V-GMSB model, as
mg̃ & 900 GeV. The CMS also analyzed their (7 TeV,∼ 5 fb−1) data to obtain similar results [82, 83].

Neutralino NLSP with prompt decay: In this case the above signature, multi-jets plus large missing en-
ergy, is still expected. Nevertheless, as the NLSP can decay as χ̃0

1 → γ + G̃, di-photon signature with
large missing energy is promising.

For the decoupled squark scenario, the CMS collaboration excluded mg̃ . 1.1 TeV for the bino-like
NLSP case, and mg̃ . 750 GeV for the wino-like NLSP case, with (8 TeV, 4 fb−1) data [111], and also
obtained similar results from (7 TeV, 4.3 fb−1) data [112]; both analyses are based on jet(s) + photon(s)
+�ET. Note that the NLSP is bino-like in the V-GMSB model for the large µ-term.

The ATLAS collaboration excluded gluinos with mg̃ . 1.1 TeV (. 950 GeV) for the bino- (wino-) like
NLSP case in the limit where the squarks are decoupled; these bounds are based on jet(s) + di-photon
+�ET signature with (7 TeV, 4.8 fb−1) data [113]. They also employed the di-photon search without jet
requirement [113]; this search focuses the electroweak production of the SUSY particles: pp → χ̃χ̃
etc., and is interesting because it covers the case where the colored particles are extremely heavy and
not accessible with the 14 TeV.

If the neutralino is quasi-long-lived and decays during the flight in the detector, typical signature at
the LHC would be a non-pointing photon [114] and a neutralino in-flight decay into a Z-boson [115].
Since the V-GMSB has an upper bound on the gluino mass mg̃ . 1.2 TeV (1.8 TeV) in the neutralino
NLSP case once a 125–126 GeV Higgs and the muon g − 2 constraints at 1σ (2σ) are imposed, it is
expected that a large part of the parameter space can be judged also in this case.

Long-lived stau NLSP: In this case the NLSP does not yield large�ET, but is observed as a heavy stable
charged particle (HSCP), where the term “stable” is used from the experimental viewpoint, i.e. it
means long-lived enough to escape from the detectors.

The CMS collaboration reported a lower bound on the mass of the lighter stau as

mτ̃1 > 223 GeV (5.37)

with analyzing their data of (7 TeV, 5.0 fb−1) [116], where the (lighter) stau is assumed to be produced
only with the direct production, pp→ τ̃1τ̃

∗
1. It should be emphasized that this bound is generic, i.e., is

most conservative and can be adopted to any models, because it targets the lighter stau pair-production;
one should however note that the production rate depends on the stau mixing.

The CMS collaboration also published constraints on the stau mass for typical GMSB models, where
charginos and neutralinos involve the main production channels [116]. However, it cannot be directly
applied to the V-GMSB case, because the mass spectra are different (cf. Fig. 5.6). The difference
results in a deviation of the velocity distribution of the NLSP staus. Once the reconstruction efficiency
of the HSCPs is published, the production channels of the charginos and neutralinos can be considered,
which would provide much more strict constraints.

The ATLAS collaboration also published a result on searches for the HSCPs [117], but their search
seems to assume direct productions of the whole sleptons, i.e., the production is not limited to the
lighter stau, and the reconstruction efficiency of the particle is not provided either. Therefore, their
results cannot be applied to the V-GMSB.

Stau NLSP with prompt decay: In this case the promising channel is multi-taus +�ET. The ATLAS col-
laboration, utilizing their (7 TeV, 4.7 fb−1) data, searched for the events with ≥ 0 jet + ≥ 1 tau +

0–1 lepton +�ET, and constrained the parameter space of GMSB scenario with (Mmess,Nmess, sgn µ) =

(250 TeV, 3,+) to obtain the bound of mg̃ & 1.0 TeV, which corresponds to mτ̃ > 160 GeV–70 GeV de-
pending on tan β (of 2–60). Nevertheless, this result cannot be applied to the V-GMSB model because,
especially, the stau is relatively heavier in the V-GMSB model as is already discussed.

An in-flight-decay of a stau leaves kink signature in the TRT detector, and is expected to be observed
if the decay length is ∼ 1 m [118]; this feature is the same as the ordinary GMSB scenario.
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* * *

In this dissertation we concentrate on the long-lived NLSP scenario. The LHC exclusion limits in Fig. 5.7
are drawn under this assumption, i.e., they are based on the analysis for the first and the third case in the
above listing. In the following of this section the detailed procedure in the evaluation of the bounds is
explained.

5.6.2 LHC constraint for the V-GMSB with long-lived neutralino NLSP
For the region with a neutralino NLSP, we interpret the ATLAS result of the search for the superparticles
in events with no lepton, 2–6 jets and missing energy, with data obtained at the LHC with ECM = 8 TeV
corresponding to an integrated luminosity of 5.8 fb−1 [81], as a constraint for the V-GMSB model. The
detailed explanation of the Monte Carlo analysis is given here.

Data sample and triggering

The ATLAS collaboration utilized their data taken in 2012 corresponding to a total integrated luminosity of
5.8 fb−1 obtained at the 8 TeV LHC. Their trigger requirement is a jet with pT > 80 GeV and the missing
energy �ET > 100 GeV.*4 Since the event selection, discussed later, includes requirements of a jet with
pT > 130 GeV and missing energy of�ET > 160 GeV, the trigger efficiency is at the efficiency plateau as the
ATLAS collaboration wrote “full efficiency” in the report. Therefore, in our analysis the trigger efficiency is
not considered.

Our data are obtained with MadGraph 5 [119] package. It includes Pythia 6.4 [120] to simulate parton
shower and initial- and final state radiation (ISR and FSR), and Delphes 2.0 [121] for detector simulation;
both of them are utilized in our analysis. The parton distribution functions (PDFs) are obtained from the
CTEQ6L1 set [122]. Pythia setting is based on the MadGraph default.

Simulated events

The events in pp → g̃g̃, g̃q̃(∗), q̃(∗)q̃(∗) channels, which are relevant for the SUSY signals, are generated, but
among them the production channels with t̃ and b̃ are neglected, whose production cross sections are less
than a few % of the total cross section.

The V-GMSB mass spectrum is generated with the customized SOFTSUSY 3.3 [91] as is explained in
Sec. 5.1.2, and passed to SUSY-HIT 1.3 [123] to calculate the decay pattern of the SUSY particles and
the Higgs bosons. The generated events are normalized to the NLO cross section obtained with Prospino
2.1 [124, 125], where the CTEQ6L1 and the CTEQ6.6M PDFs [122] are used.

Object reconstruction

Our detector simulation is based on the Delphes 2.0 package. The default parameter set for the ATLAS
experiment, which can be found in DetectorCard_ATLAS.dat in Delphes package, is used for energy
resolutions and calorimeter tile configurations.

Jets are reconstructed using the anti-kt jet clustering algorithm [44] with the distance parameter of 0.4,
where Delphes utilizes FASTJET 2.3 [126]. For the missing energy, the Delphes vanilla outputs are used.

In the electron reconstruction, the ATLAS collaboration uses the “medium” criterion. The detection
efficiency is reported in Ref. [48], which are already introduced in Sec. 3.2. However, the report is based on
the data taken at the 7 TeV LHC, and no efficiencies at the 8 TeV LHC are public. Therefore, assuming that
the efficiencies at the 8 TeV LHC are the same as that at the 7 TeV, the efficiency used in the analysis is taken
from Ref. [48]. In principle, the efficiency is, and should be expressed as, a function of (pT, η). However,
such functions are not reported yet due to limitation of the data; they instead reported the efficiency as two

*4The transverse momentum pT and the transverse missing energy are defined as

pT :=
(
px, py

)
, pT := ‖pT‖; �ET :=

(
�Ex, �Ey

)
, �ET =

∥∥∥∥�ET

∥∥∥∥ . (5.38)
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separated functions of pT and of η with unignorable uncertainties. Thus, for simplicity, following efficiency
is adopted for the electron reconstruction in our analysis:

• The reconstruction efficiency as a constant: αreco = 0.943 [48, Fig. 22(B)].

• The identification efficiency for “medium” as a constant for pT > 20 GeV: εmed
ID = 0.942 [48, Table 7].

The identification efficiency significantly drops below pT = 20 GeV; for such electrons the
efficiency is set as (αreco, ε

med
ID ) = (0.943, 0.8) in our simulation set, although αreco is not reported

for this pT region. Note that, however, this efficiency is not used in this analysis, because electrons
below pT = 20 GeV are discarded.

The muon in this analysis seems to be reconstructed with the “combined” method, which is explained
in Sec. 3.2. The corresponding efficiency is found in Ref. [53] for muons with pT > 20 GeV, which is also
based on the 7 TeV data. Our analysis adopts the following simplified efficiency for the muon detection:

• The efficiency for inner detectors as a constant: εID = 0.88 [53, Fig. 4].

• The efficiency for muon spectrometer in combined muon method as: εCB
MS = 0.973 for |η| > 0.25 and

0.828 for |η| < 0.25 [53, Fig. 6]. This difference comes from the fact that the muon spectrometer is
only partially equipped in this region.

Consequently, the lepton reconstruction efficiencies are defined as

ε(e) = αreco · ε
med
ID ≈ 89%, ε(µ) = εID · ε

CB
MS ≈ 96% (82%) for |η| > 0.25 (< 0.25). (5.39)

in our analysis.

Actually these efficiencies are prepared for another analysis; in the analysis the events with three
leptons are simulated and analyzed, and this set of efficiencies reproduces the ATLAS analysis in
Ref. [127] very well.

* * *

Only the jets with pT > 20 GeV and |η| < 2.8, the electrons with pT > 20 GeV and |η| < 2.47, and the
muons with pT > 10 GeV and |η| < 2.4 are considered. For overlap removal, jets are rejected if electrons are
found within a distance of ∆R = 0.2 from the jet, and then leptons within ∆R = 0.4 of any jets are discarded.
Here, pT is a missing transverse momentum, ∆R :=

√
(∆η)2 + (∆φ)2 is a distance parameter between two

objects, and η and φ are pseudo-rapidity and azimuthal angle around the beam direction, respectively.

Signal regions

Our analysis is employed with the same definition of the 12 inclusive signal regions (SRs) as the original
analysis [81], which is summarized in Table 5.2. However, the selections based on jet quality selection
criteria and primary vertex reconstruction are not employed due to the simplified detector simulation.

The events with any reconstructed electrons or muons are vetoed. At least two jets with pT > 60 GeV
are required, and the leading jet must be with pT > 130 GeV. The SRs are classified with the number of jets
having pT > 60 GeV. The definition is inclusive; for example, if an event has four jets with pT > 60 GeV, it
can be a candidate for the events in the SRs A, B, and C.

Two requirements designed to reduce the background events from multi-jet processes are imposed. One
is on the azimuthal separations between�ET and jets, which is expressed as ∆φ( ji,�ET)min in Table 5.2. For
the SR A (B), leading two (three) jets are considered for this selection. For the others, leading three jets
must have a separation of at least 0.4, and all the other jets with pT > 40 GeV must at least 0.2. The other
requirement is on the ratio between�ET and m(n)

eff
, which is defined as

m(n)
eff

:=�ET +

n∑
i=1

∥∥∥pT of i-th leading jet
∥∥∥ .

Finally, the inclusive effective mass is utilized, which is defined as minc
eff

:= m(N)
eff

, where N is the number
of jets with pT > 40 GeV.
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Table 5.2: The definition of the 12 inclusive signal regions (SRs), which is the same as the ATLAS original
analysis [81]. The effective mass m(n)

eff
(minc

eff
) is defined as the scalar sum of�ET and pT’s of the leading n-jets

(all jets with pT > 40 GeV). Some categories have two or three SRs, which are shown in the final two rows;
they are called ‘tight’, ‘medium’, and ‘loose’, respectively.

Signal Regions

A B C D E

(≥ 2-jets) (≥ 3-jets) (≥ 4-jets) (≥ 5-jets) (≥ 6-jets)

# leptons = 0

�ET [GeV] > 160

pT( j1) [GeV] > 130

pT( j2) [GeV] > 60

pT( j3) [GeV] > — 60 60 60 60

pT( j4) [GeV] > — — — 60 60

pT( j5) [GeV] > — — — 60 60

pT( j6) [GeV] > — — — — 60

∆φ( ji,�ET)min > 0.4(i = 1, 2) 0.4(i = 1, 2, 3) 0.6 (i ≤ 3); 0.4 (pT > 40 GeV jets)

�ET/m
(n)
eff

>
0.3 / 0.4 / 0.4 0.25 / 0.3 / — 0.25 / 0.3 / 0.3 0.15 / — / — 0.15 / 0.25 / 0.3

(n = 2) (n = 3) (n = 4) (n = 5) (n = 6)

minc
eff

[TeV] > 1.9 / 1.3 / 1.0 1.9 / 1.3 / — 1.9 / 1.3 / 1.0 1.7 / — / — 1.4 / 1.3 / 1.0
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Table 5.3: The result of the ATLAS analysis in Ref. [81]. The last two columns show the 95% upper limits
(UL) on the excess number of events, NBSM, and that on the cross section of the new physics, σBSM. One
should note that the experimental uncertainties are already considered in the calculation of the upper limits.

SR Background Observed UL on NBSM UL on σBSM [fb]

A-loose 650 ± 130 643 224.8 38.8

A-medium 140 ± 33 111 33.9 5.84

B-medium 115 ± 30 106 43.8 7.55

C-loose 155 ± 31 156 65.7 11.3

C-medium 33 ± 8 31 17.9 3.09

E-loose 5.7 ± 1.7 9 10.4 1.79

E-medium 3.5 ± 1.7 7 9.9 1.71

A-tight 14 ± 5 10 8.9 1.53

B-tight 8.7 ± 3.4 7 7.3 1.26

C-tight 2.8 ± 1.2 1 3.3 0.57

D-tight 6.3 ± 2.1 5 6.0 1.03

E-tight 10 ± 4 9 9.3 1.60

Analysis procedure

The ATLAS collaboration found no significant excesses; therefore the cross section of models beyond the
Standard Model, σBSM, receives an upper bound. The expected number of the background events, the
observed number, and the upper limits are summarized in Table 5.3. This result is interpreted to obtain the
constraints (shown in Fig. 5.7) with the following procedure, so-called CLs-method.

First, the expected sensitivity CLexp
s is defined for each of the 12 SRs. It is defined as

CLexp
s :=

CLexp
s+b

CLexp
b

; (5.40)

CLexp
b := 1 −

(
the probability that a random variable which obeys f (Nb, σb) exceeds Nb

)
,

CLexp
s+b := 1 −

(
the probability that a random variable which obeys f (Ns+b, σs+b) exceeds Nb

)
,

Nb :=
(
expected number of background events

)
,

Ns+b := Nb +
(
expected number of SUSY events

)
,

σb :=
(
uncertainty of Nb

)
,

σs+b :=
√
σ2

b + σ2
s ,where σs is the uncertainty of the number of SUSY events,

f (µ, σ) := Poisson (Normal(µ, σ)) ,

where Poisson(x) is the Poisson distribution with the mean x, and Normal(µ, σ) is the normal distribution
with the mean µ and the variance σ2. As the uncertainties in the cross section of the SUSY events are
not included in the procedure to obtain the upper limits (shown in Table 5.3) but are considered afterwards
(cf. Fig. 5.9 etc.), our procedure uses σs = 0. Here one should note that CLexp

s is determined for each model
point, and that the number of background events is assumed for simplicity to distribute with the normal
distribution.



Chapter5 The MSSM with Vector-like Matters 65

CLexp
b and CLexp

s+b can be interpreted as the expected confidence level of the background-only and
the signal-plus-background hypothesis, respectively, or the expected probability that the respective
hypothesis describes the data. Here, since the “expected data” are nothing but the expected number
of background events, CLexp

b and CLexp
s+b are defined as the probability that the respective hypothesis

describes the number of background.

The SR which gives the smallest CLexp
s is expected to give the most stringent constraints on the model

point, and therefore adopted as “the SR for the point.” In Figs. 5.9 and 5.10, which will be introduced
later, which SR is selected for each model point is displayed. Then, the observed confidence level CLs is
calculated for the selected SR, which is defined as

CLs :=
CLs+b

CLb
; (5.41)

CLb := 1 −
(
the probability that a random variable which obeys f (Nb, σb) exceeds Ndata

)
,

CLs+b := 1 −
(
the probability that a random variable which obeys f (Ns+b, σs+b) exceeds Ndata

)
,

Ndata := (observed number of events) .

If the CLs, calculated for the selected SR, satisfies CLs < 0.05, the point is excluded at 95% confidence
level (CL). Otherwise, the point is not excluded. It should be important that, although we have 12 SRs, the
analysis based on the data is employed for a sole SR, and thus the condition CLs < 0.05 results in 95% CL
limit.

It is known that the CLs-method generally gives a conservative limit, i.e., the obtained constraint
is looser than the “true” one.

Verification of our analysis

To verify our analysis, the distributions of the inclusive effective mass, minc
eff

, are compared. The distributions
for the SRs C-tight, D-tight and E-tight are displayed in Fig. 5.8, where the results from ATLAS Monte Carlo
simulations and our Monte Carlo simulation are shown, in which all the selections but on minc

eff
itself are em-

ployed. As the ATLAS collaboration provides only the histograms which include both the Standard Model
and the SUSY contributions, the comparison was done between the ATLAS Standard Model simulation plus
the ATLAS SUSY simulation (displayed with gray plus blue histograms), and, the ATLAS Standard Model
simulation plus our SUSY simulation (displayed with red lines). The results do agree well with slight deficit
in our analysis.

The exclusion limit on the CMSSM (m0,M1/2) plane from our analysis is also shown in Fig. 5.9. This is
based on the procedure, the CLs-method, described just above; the letters in the parameter spaces denote the
expected-to-be-most-sensitive SR, that is, the SR which is selected for the point. Interpolation to obtain the
curve is based on log CLs. The constraint is slightly looser than that reported by the ATLAS collaboration,
but as ours is still conservative, we decided to accept this analysis.

Result

The results are already shown in Fig. 5.7: the black solid lines in the neutralino NLSP region, i.e., below
the light blue lines. The exclusion limits with considering theoretical uncertainties are also drawn as the
black dashed lines. The theoretical uncertainties mainly originate in the evaluation of renormalization and
factorization scales, and choice of the PDFs [128]. For the uncertainties we adopt ±35% in the production
cross section.

The left sides of the black lines are excluded. Consequently, the gluino mass is required to be larger
than approximately 1100 GeV for Mmess = 106 GeV, if the theoretical uncertainties are not included. The
theoretical uncertainties can shift the mass bound by . 100 GeV. When Mmess is larger, the exclusion
becomes weaker for the fixed gluino mass. This is because the squarks become heavier, and the production
cross section of the squark, especially that of pp → g̃q̃, becomes smaller. When the messenger scale is as
large as 1010 GeV, the bound becomes mg̃ & 1030 GeV.
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Figure 5.8: The minc
eff

distributions before the selection on itself. Here the lepton efficiencies are taken
into account (cf. Fig. 5.11). As a benchmark model, the CMSSM with (m0,M1/2, A0, tan β, sgn µ) =

(1600 GeV, 400 GeV, 0, 10,+) is chosen. Only the distributions for the SRs C-tight, D-tight, and E-tight
are shown here. The results from the ATLAS Monte Carlo analysis [81] are shown as the histograms; the
gray are the events from Standard Model background, and the blue, stacked on the gray, are from the SUSY
signal. The results based on our analysis are drawn with red lines, but since our analysis does not simulate
background processes, the background results reported by the ATLAS collaboration are used as the back-
ground histogram for our analysis. These two results are compared to certificate our analysis. Note that the
observed data are not shown here.
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µβmSUGRA: tan   =10, A
0
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Figure 5.9: 95% CL exclusion limit for the CMSSM scenario with (A0, tan β, sgn µ) = (0, 10,+) presented in
the (m0,M1/2)-plane. The black line with a gray band is the result reported by the ATLAS collaboration in
Ref. [81] with ±1σ uncertainty on the calculation of SUSY cross section. The red line is the result from our
analysis, and the letters denote the SR which is adopted for the point. (See text for detail.) As a reference,
the limits obtained in our analysis with ±20% theoretical uncertainty are shown as the red dotted lines.
Interpolation to obtain the curve is based on log CLs. The matching is not complete, but a decision was
made to accept this result since it is conservative. The blue line describes the result from our analysis but
with setting the lepton detection efficiencies as 100%. It tightens the lepton veto, and slightly loosens the
bound. This figure is based on a figure produced by the ATLAS collaboration and used in Ref. [81].
(ATLAS Experiment c©2012 CERN)
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Table 5.4: The cross section, the acceptance, and the expected number of events, on the V-GMSB model
points (Λ,Mmess, tan β,MV ) = (140 GeV, 106 GeV, 20, 1 GeV) and (130 GeV, 1010 GeV, 20, 1 GeV). The
gluino mass, mg̃, and the mass of the lightest squark among the first and the second generations, mq̃, are
also displayed. See Fig. 5.6 for the full mass spectrum of the former point. For both points, the “D-tight” SR
is selected as the expected-to-be-most-promising SR, and thus adopted for the evaluation. For each process
5000 events are generated. As can be seen in Fig. 5.7, the former model point is not excluded since N < 6.0
(cf. Table 5.3), while the latter is excluded.

(Λ,Mmess, tan β) (140 TeV, 106 GeV, 20) (130 TeV, 1010 GeV, 20)
mg̃ 1116 GeV 1002 GeV
mq̃R 1813 GeV 1887 GeV

production channel g̃g̃ g̃q̃ q̃q̃ g̃g̃ g̃q̃ q̃q̃
cross section σ (fb) 5.54 2.75 0.238 16.2 3.31 0.119

acceptance A 0.0758 0.184 0.201 0.0488 0.155 0.164
N = σ × A × 5.8fb−1 2.44 2.93 0.28 4.59 2.98 0.11

N (total) 5.65 7.68

The SRs used in the limit calculation, i.e., the expected-to-be-most-stringent SRs, are shown in Fig. 5.10.
In the figure the red lines show the exclusion limits under assuming full lepton reconstruction, i.e., setting the
lepton efficiencies as 100%. Discussion on this topic is performed later. What is important is that for almost
all points the “D-tight” SR is selected. The “D-tight” SR requires five hard jets and large missing energy. It
is easy to understand the origin of the four hard jets: the gluino is lightest among the colored superparticles,
and it generates at least two hard jets in its cascade decay. The origin of the fifth jet can be understood as
follows. In the channel of pp→ g̃q̃, the hard fifth jet is produced in decays of the squarks into the gluino. In
the pp → g̃g̃ channel, the largest fraction of events which pass the “D-tight” cut have additional hard jet(s)
from ISR and FSR (cf. Ref. [129]). The ISR can yield additional hard jet(s) in the pp→ g̃q̃ channel as well.
In the rest of the events the fifth jet comes from decays of W± and τ. Here W± is generated in the decay of
the top quark, and τ comes from the cascade decay of χ̃±1 (χ̃0

2)→ τ̃τ→ ττχ̃0
1, where χ̃±1 (χ̃0

2) is provided from
decays of colored superparticles.

One might worry that the hardness of the ISR and FSR jets might not be simulated correctly in Pythia.
In order to resolve this uncertainty, the analysis for the “D-tight” SR with the MLM-matching scheme [130],
which is implemented in MadGraph, is performed at several model points. The analysis employs a shower
kt clustering with avoiding double counting between the gluino and squarks [131]. With this analysis it is
checked that the results from Pythia agree with those with the MLM-matching.

The main production channels of SUSY events are pp → g̃g̃, g̃q̃, q̃q̃. Although the squarks are rel-
atively heavy compared to the gluino as shown in Fig. 5.6 and Fig. 5.7(d), they are not decoupled from
the productions. Since the squark masses are almost independent of tan β, so are the LHC exclusion lines
in Figs. 5.7(a)-(c). For illustration, in Table 5.4 we show the cross section of each channel at two model
points, (Λ,Mmess, tan β,MV ) = (140 TeV, 106 GeV, 20, 1 TeV) and (130 TeV, 1010 GeV, 20, 1 TeV). These
two points are, as shown in Fig. 5.10, analyzed with the “D-tight” SR, and close to the LHC exclusion limit.
It is found that the channels of pp → g̃g̃ and g̃q̃ comparably contribute to the SUSY searches for a low
messenger scale (i.e., for a relatively light squark), while pp → g̃g̃ dominates for a high messenger scale (a
heavy squark).

Appendix — On lepton efficiencies

To check the effect of the lepton efficiencies, the above analysis is also performed with setting all the lepton
efficiencies as 100%. Here the leptons are perfectly detected, and it is expected to tighten the lepton veto.

As is expected, the 100% lepton efficiencies result in slightly looser limits, which are illustrated in
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Figure 5.10: The same as Fig. 5.7, but here, for the cases where the neutralino is the NLSP, the SRs used
for the limit calculation are shown instead of the upper limits with uncertainties. In addition, the limits
obtained with assuming the lepton efficiencies as 100% are shown as red lines to see the effect of the lepton
efficiencies.
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Figure 5.11: The same as Fig. 5.8, but here the lepton efficiencies are set to be 100%, which tightens the
lepton veto and makes event yields decrease by ∼ 5%.

Figs. 5.11 and 5.10, and also in Fig. 5.9. In Fig. 5.11, the histogram of Fig. 5.8 is reproduced with assuming
100% lepton detection. The event yields decreases by ∼ 5%. In Fig. 5.10, the exclusion limits with nominal
cross section is drawn with red lines. It is observed that the bound is imperceptibly looser than the original
one (the black solid lines). This comparison is also performed in Fig. 5.9; there the bound with 100%
efficiencies are drawn with a blue line.

* * *

Now everything what Author wanted to explain is fully shown. Let us move on to the stau NLSP case.

5.6.3 LHC constraint for the V-GMSB with long-lived stau NLSP

The LHC constraints for this case are also already drawn in Figs. 5.7(a)–(c); the black solid lines above the
light blue lines. The left-side regions of the lines are excluded.

To obtain this limit we just utilize the CMS bound of 223 GeV, Eq. (5.37), corresponding to the 95%
CL exclusion, obtained from searches for the heavy long-lived staus via the direct production [116]. The
CMS collaboration evaluated the theoretical uncertainties as 3–7% in the cross section calculations due
to renormalization and factorization scales, αs, and choice of PDFs. In the figure, we assigned theoretical
uncertainty of 8% for the cross section, which corresponds to 2% uncertainty for the stau mass bound, shown
by black dashed lines. Consequently, the regions with the gluino mass lighter than 1200 GeV are excluded;
the bound becomes more severe for a larger tan β.
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Figure 5.12: (left) The lower bound, obtained from the LHC SUSY searches, on the gluino mass when the
NLSP is the neutralino. (right) That on the lighter stau mass for the cases where the NLSP is the stau. The
yellow (orange) regions show the parameter spaces where the muon g − 2 discrepancy can be explained
within 2σ- (1σ-) level.

5.6.4 Discussion
The LHC constraint can be interpreted as a function of the messenger scale in each category of the NLSP.
The results are shown in Fig. 5.12. The left and right panels correspond to the cases with the neutralino NLSP
and the stau NLSP, respectively. Note that, throughout this section, the NLSP is assumed to be long-lived.
For a given Mmess, the muon g − 2 discrepancy can be explained at the 1σ (2σ) level when the gluino/stau
mass is within the orange (yellow) region. The upper ends of these regions represent the upper bounds on
the gluino/stau mass in order to explain the muon g − 2 at the 1σ (2σ) level.

In the case with the neutralino NLSP (left panel), the upper bound is determined by the requirement
that the neutralino is lighter than the stau. In fact, for a fixed value of the muon g − 2, the gluino mass
is maximized when tan β comes on the light blue lines in Fig. 5.7. When Mmess is as large as 1010 GeV,
the vacuum stability bound can give a more severe bound, but the result is almost unchanged as can be
noticed from Fig. 5.7(a). This upper bound should be compared with the lower bound on the gluino mass
from the LHC SUSY search, drawn with the black solid line. Here, the exclusion limit at tan β = 20 is
used for illustration, since it does not depend much on tan β. The black dashed lines show the theoretical
uncertainties. (See discussion above.) It is found that the whole region where the muon g − 2 discrepancy is
explained at the 1σ level is already excluded by the direct searches for the superparticles at LHC. The region
with the 2σ explanation is still viable, and expected to be covered with the 14 TeV LHC.

For the stau NLSP case, the upper bound on the stau mass is shown in the right panel of Fig. 5.12. The
upper ends of the yellow and orange regions are obtained from the requirement that the stau is the NLSP.
According to Fig. 5.7(c) and (d), the stau mass is maximized for a fixed muon g − 2 when it is close to the
neutralino mass. The black solid line is the lower bound on the stau mass from the LHC. It does not include
the theoretical uncertainties; they are taken into account in the black dashed lines. Although the vacuum
stability condition can give a tighter bound for Mmess ∼ 109–1010 GeV, such parameter regions are already
constrained by the LHC (see Fig. 5.7(a)). Consequently, it is found that the region where the muon g − 2
is explained at 1σ-level is fully excluded by the searches for the heavy long-lived charged particles at the
LHC. It is even expected to become more severe, for instance by analyzing the data obtained at the 8 TeV
LHC.
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Section 5.7 Searches for the Vector-like Quark
Finally, let us discuss searches for the extra vector-like quarks. The LHC experiments have not discovered
any extra quarks, and thus the V-MSSM is constrained. What is important is that what is constrained is the
SUSY-invariant mass terms MQ′ and MU′ together with Y ′, and therefore the constraint is independent on the
SUSY-breaking scenario. Therefore, the discussion performed in this section is not specific to the V-GMSB
model, but generic for the V-MSSM scenario.

The extra vector-like quarks are produced with considerable cross sections at the LHC, a hadron collider.
Searches for these particles are of great interest and importance because the existence of these particles would
be a direct evidence of the V-MSSM, and besides, because these particles should be near the TeV-scale as
we have seen in Sec. 5.5, they are expected to be within the reach of the LHC.

The vector-like quarks have characteristic decay channels, which are different from the ordinal fourth
generation quarks. We first check their masses and decay modes, and then current experimental bounds on
the masses of those particles are discussed. After that we will mention prospects of further searches.

* * *

In the following discussions we use Y ′ = 1.05, the infrared fixed point value [93], as a reference value.
The approximation MQ′ = MU′ (=: MV ) is also exploited; one should understand MQ′ = MU′ when we refer
to MV .

As the Standard Model parameters relevant to the decay branch, the following are used:

mt = 173.5 GeV, mZ = 91.2 GeV, v = 174 GeV, g2 = 0.652,
mb = 4.78 GeV, mW = 80.4 GeV, mh = 126 GeV, gZ = 0.743.

5.7.1 Masses and decay modes
The masses of the vector-like quarks are already reviewed in Sec. 5.1.2. When we set MQ′ = MU′ =: MV ,
the masses are approximately given as

mt′1,t
′
2

=

√√√√√
M2

Q′ + M2
U′ + Y ′2v2

u

2
±

√√√ M2
Q′ + M2

U′ + Y ′2v2
u

2

2

− M2
Q′M

2
U′ ≈ MV

(
1 ± α +

α2

2

)
, (5.42)

mb′ = MQ′ = MV , (5.43)

where one can see the mass hierarchy
mt′1 < mb′ < mt′ , (5.44)

and the mass splittings among them are characterized by

α :=
Y ′v sin β

2MQ′
≈

91 GeV
MV

×

(
Y ′

1.05

)
(5.45)

with a large tan β. As a reference, Fig. 5.13 is provided, which shows the masses of the vector-like quarks as
functions of (MQ′ ,MU′ ).

As we assume that the vector-like quarks are only mixed with the third generation Standard Model quarks
(Q3, Ū3, and D̄3), the possible decay channels are summarized as

t′2 → b′W, t′1h, t′1Z, b′ → t′1W, t′1 → bW, th, tZ, (5.46)

where some of them may be kinematically forbidden if the mass separation is smaller.
The lightest one, t′1, is the most important for the vector-like quark search because of its large production

cross section. As we assume very tiny mixing between the Standard Model quarks and the vector-like quarks,
the pair-production pp→ t′1 t̄′1 is the most promising channel, and it leaves characteristic final state particles
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Figure 5.13: Masses of the vector-like quarks as functions of (MQ′ ,MU′ ). The mixing term is taken as
Y ′vu = 1.05 × 174 GeV.

Table 5.5: Benchmark points for the mixing parameters. The shown values as the branching ratios are
calculated at mt′1 = 400 GeV (MQ′ = MU′ ' 483 GeV), Y ′ = 1.05, tan β = 30 and mh = 125 GeV; they
have nontrivial dependence on mt′1 , but are almost stable under changes of the absolute values of the mixing
parameters (ε’s) as long as the mixing parameters are much smaller than O(1).

εU : ε′U : εD
Branching Ratios for mt′1 = 400 GeV

Br
(
t′1 → bW

)
Br

(
t′1 → tZ

)
Br

(
t′1 → th

)
(A) 0 : 0 : 1 1 0 0
(B) 1 : 1 : 1 0.51 0.44 0.05
(C) 1 : 0 : 0 0.48 0.13 0.39
(D) 0 : 1 : 0 0.15 0.19 0.65
(E) 1 : 2 : 0 0.01 0.48 0.51
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Table 5.6: Summary of current vector-like quark searches. The displayed limits are at 95% CL. Several
obsoleted analyses are also shown with parentheses as a reference. For t′ → bW search, “2l” denotes the
di-lepton channel bbWW → bbllνν, while “l + j” does the lepton plus jets channel bbWW → bblν j j.

Decay channel EXP. Analyzed data Obtained limit References

Br
(
t′1 → bW

)
= 1

ATLAS 7 TeV, 4.7 fb−1 (l + j) mt′1 > 656 GeV [132] ([133])

CMS
7 TeV,∼ 5 fb−1 (l + j) mt′1 > 570 GeV [134] ([135])

7 TeV, 5.0 fb−1 (2l) mt′1 > 557 GeV [136]

CDF 1.96 TeV, 5.6 fb−1 (2l) mt′1 > 358 GeV [137]

Br
(
t′1 → qW

)
= 1

ATLAS 7 TeV, 1.04 fb−1 (2l) mt′1 > 350 GeV [138]

CDF 1.96 TeV, 5.6 fb−1 (l + j) mt′1 > 340 GeV [137]

D0 1.96 TeV, 5.3 fb−1 (l + j) mt′1 > 285 GeV [139]

Br
(
t′1 → tZ

)
= 1 CMS 7 TeV, 5.0 fb−1 mt′1 > 625 GeV [140] ([141])

t′1 → bW, tZ, th ATLAS 7 TeV, 4.7 fb−1 See Fig. 5.17. [132]

with multi-b-jets plus leptons depending on the decay pattern. Thus the decay branching ratio of t′1 is crucial
for the vector-like quark search.

The decay widths [93] are summarized in Appendix 5.B, and the branching ratio can be calculated
straightforwardly. Then one finds that the ratio has nontrivial dependence on the mass mt′1 , and the ratio
among the mixing parameters εU , ε′U , and εD [93]. Here note that the branching ratio is insensitive to the
absolute value of the mixings as long as they are tiny, and also that the dependence on tan β appears only
with a form εD/ tan β as we focus on the cases with a large tan β.

In order to proceed the discussion, we pick up several mixing patterns shown in Table 5.5 as benchmark
points. At the benchmark point (A), t′1 exclusively decays into bW, or Br

(
t′1 → bW

)
= 1, for any mt′1 .

However, except for that point, the decay branching ratio of t′1 has nontrivial dependence on the mass of t′1.
(cf. Figs. 5.14–5.16.) This is mainly because the t′1 → tZ and t′1 → th channels are closed if the mass of t′1 is
below “thresholds.” Especially, if mt′1 < mt + mZ ' 264 GeV, only the t′1 → bW channel is open regardless
of the mixing parameters; this case corresponds to MV . 316 GeV under the MQ′ = MU′ approximation.

5.7.2 Current experimental bounds
Searches for the vector-like quarks can be employed in a similar way to those for the fourth generation
quarks. The current reports from the LHC experiments are summarized in Table 5.6, together with results
from the Tevatron collider. If t′1 decays exclusively into bW, i.e., Br

(
t′1 → bW

)
= 1, results from searches

for the fourth generation up-type quark can be applied, and the tightest bound is mt′1 > 656 GeV [132]. The
ATLAS collaboration also obtained a bound for the case in which Br

(
t′1 → qW

)
= 1, where q is a generic

down-type quark: q = (d, s, b), of mt′1 > 350 GeV [138]. For the case where Br
(
t′1 → tZ

)
= 1, the CMS

obtained a limit of mt′1 > 475 GeV [141].
Those bounds can be applied to the above model points (A)–(E). The result is shown in Fig. 5.14–5.16.

In Fig. 5.14 the 7 TeV LHC bound for the t′ → tZ channel reported by the CMS collaboration [140] is
displayed as a red solid line. They reported upper bounds on the production cross section in a mass range of
400 GeV ≤ mt′1 ≤ 650 GeV. The black solid line is the total cross section of pp→ t′1 t̄′1, and the other (dotted
and dashed) lines are the “effective” cross section of pp → t′1 t̄′1 → (bW)(b̄W). It is observed that the model
points (B) and (E) have lower bounds of mt′1 & 400 GeV and 460 GeV, respectively. Note that the line for
(A) does not appear in this figure because Br

(
t′1 → tZ

)
= 0.

The results for the t′1 → bW channel from the LHC experiments are shown in Figs. 5.15; here one
result from the ATLAS collaboration [132] and two from the CMS [134, 136] are displayed (cf. Table 5.6).
Benchmark points (A), (B), and (C) are constrained as, respectively, mt′1 & 650 GeV, 420 GeV, and 420 GeV.
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mt′1 < 650 GeV. The black solid line is the NNLO total cross section of t′ t̄′ production, calculated with
HATHOR [142]. Considering the branching ratio Br
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)
, this limit can be applied to the vector-like

quark with generic decay branch. We show the corresponding t′1 t̄′1 cross section with the branching effect at
the benchmark points (A)–(E) as dashed and dotted lines. Note that the line corresponding to the point (A)
is not shown since Br
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)
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Figure 5.16: The same as Fig. 5.15, but from the CDF experiment at the Tevatron [137]. t′1 is assumed to
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sections are for 1.96 GeV pp̄ collision. Note again that the line for (A) overlaps the total cross section line.

The point (D) is not constrained by the above results; one reason is that the LHC results are reported only
for mt′1 > 350 GeV. To give constraint for this benchmark point the analysis by the CDF collaboration [137]
can be utilized. Their result obtained at the Tevatron collider with ECM = 1.96 TeV pp̄ collision is displayed
in Fig. 5.16, and yields a limit of mt′1 & 300 GeV for the benchmark point (D).

In this analysis the production cross sections are calculated with HATHOR 1.3 at the NNLO level. The
CT10nnlo PDFs [143] are used.

* * *

An interesting analysis was reported by the ATLAS collaboration [132]. They employed an inclusive
search for the vector-like quark t′1 in the events with at least three jets, at least one of which should be
tagged as a b-jet, and at least one lepton (e or µ), and reported the excluded regions on the parameter space
of

[
Br

(
t′ → bW

)
,Br

(
t′ → th

)]
-plane with the mass mt′1 fixed. The result is shown in Fig. 5.17 with a

modification that our benchmark points (A)–(E) are plotted instead of theirs. Interpreting the figure, we
obtain tighter bounds for the benchmark point (B) as mt′1 & 450 GeV and (C) as mt′1 & 500 GeV.

5.7.3 Prospects of further searches
In order is discussion on future prospects to conclude this section. Fig. 5.18 shows the production cross
sections of pp(pp̄)→ t′1 t̄′1 as functions of the t′1 quark mass, together with an extra axis of MV (= MQ′ = MU′ ).
The cross sections are calculated with HATHOR 1.3 [142] and the CT10nnlo PDFs [143] at the NNLO level.
The cross section doubles at the 8 TeV LHC, and is ten times larger at the 14 TeV, than that at ECM = 7 TeV.

As we have just seen, the inclusive search for pp → t′t′ → (bW, th, tZ) + (bW, th, tZ) by the ATLAS
collaboration [132] is of great importance and interest. Especially, because the pair-production cross section
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Figure 5.17: The result of the inclusive search for the vector-like quark t′1 reported by the ATLAS collabo-
ration [132]. In this analysis the decay branch of t′1 is not specified, but the assumption that the vector-like
quarks only mix with the third generation Standard Model quarks is employed. Therefore, this search gives
an inclusive study for the three decay patterns: t′1 → bW, tZ, th. The result is shown in the plane of the
decay branch; here one should note that Br

(
t′1 → tZ

)
, which is not displayed explicitly in this figure, is equal

to 1 − Br
(
t′1 → bW

)
− Br

(
t′1 → th

)
, and thus implicitly shown. This report gives tighter bounds for our

benchmark points (B) and (C) than the analyses focusing on a specific decay branch, i.e., of Figs. 5.14 and
5.15. Original version of this figure is produced by the ATLAS collaboration and used in Ref. [132].
(ATLAS Experiment c©2012 CERN)
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drastically improves at the 14 TeV LHC, we can expect that the t′1 quark with ∼ 1–1.2 TeV will be in our
experimental reach. As the V-GMSB model requires MV . 1.2 TeV to explain the muon g − 2 anomaly, the
14 TeV LHC would be the court for the V-GMSB model; that is, the fate of the V-GMSB scenario, and thus
the GMSB framework, with the explanation of the muon g − 2 problem will be determined there.

Here it should be emphasized that the ATLAS analysis utilizes the event with at least one b-jet. As the
t′1 decay generally yields 1–3 b-quarks, its pair-production would be searched more efficiently with multiple
b-jets requirement [94, 144]. In Ref. [144] the prospects of this strategy are discussed with Monte Carlo
fast simulations, and it is found that the requirement of 1 lepton+ ≥ 3 b-jets would yield complementary
exclusion regions on the parameter spaces of Fig. 5.17. This analysis would also be an important key for
searches for the heavier vector-like quarks, b′ and t′2.

On the experimental side, we now realize that b-tagging, discussed briefly in Chapter 3, is acquiring
importance from the fact that the Higgs boson is expected to decay mainly into b-quarks. Improvements
on the efficiency and the mis-tag rate, and deep understanding of the algorithms, are now much awaited for
searches of new physics beyond the Standard Model.

Section 5.8 Summary
Now the main chapter of this dissertation is finishing. Let us summarize what we learned.

We in this section considered the V-MSSM, an extension of the MSSM with vector-like matters. It has
three virtues. First, it respects the daydream of the SU(5)-GUTs. Also, the Higgs boson mass of 126 GeV is
realized with help of the vector-like quarks without exploiting the heavy stops of ∼ 1–10 TeV. Then squarks
need not to be so heavy, and thus sleptons either. It allows us to explain the muon g− 2 discrepancy with the
SUSY contributions, even under the GMSB scenario.

These features are summarized in Fig. 5.7 for the V-GMSB model. Even after imposing the LHC limits,
the yellow regions, where the muon g−2 anomaly is explained within 2σ-level, survive in all the three plots.
With the LHC limits, the gluino mass is constrained as mg̃ & 1.0 TeV under the V-GMSB model.

Another important point in this figure is that the mass parameter MV is also constrained for successful
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explanation of the muon g − 2 anomaly. For (c)Mmess = 106 GeV case, the mass parameter MV should be
∼ 800–1200 GeV; for (a) and (b), it should be lighter as ∼ 700–1000 GeV. Therefore, the vector-like quark
should be lighter than . 1.1 TeV, and this is obviously within the reach of the 14 TeV LHC.

As for the vector-like quark searches, the one by the ATLAS collaboration [132] is very interesting and
promising (cf. Fig. 5.17). This analysis is based on the requirement of at least one b-jet, but since more
b-quarks are expected from the decays of t′1, much more parameter regions is expected to be excluded with
multi-b-jets analysis [144]. The importance of b-tagging should be, therefore, emphasized now.

Several future works are remained just for the vector-like quark searches. First, in this dissertation
we simply restrict the model to have no mixings between the vector-like matters and the Standard Model
fermions in the first and second generations, and to have small mixings between the vector-like matters and
the third generation. Actually the b-jet signature is provided by this assumption; if the vector-like quarks
mix with the lighter quarks, other strategies are mandatory for vector-like quark searches. In this context,
quantitative evaluation of current experimental bounds on the mixing parameters is awaited.

Analyses for the cases with a short-lived NLSP are, although we briefly discussed, left as future works.

* * *

From a theoretical viewpoint, the V-MSSM scenario has several interesting features. One of them that
the large µ-term. This feature actually worsens the argument of the little hierarchy problem. Therefore, it is
still difficult to settle the collision between the little hierarchy and the 126 GeV Higgs mass, and hence, with
examining this argument, another window towards fundamental theories might arise, as we have seen that
the muon g − 2 anomaly bore the V-GMSB scenario.

The mechanism to suppress the coupling Y ′′ is also worth investigated, for which a model with Peccei–
Quinn symmetry was proposed [145].

Cosmological discussion, which is not performed in this dissertation at all, is also left as future works,
such as the effect of the vector-like matters to the history of our Universe, and consequences of the large
strong coupling g3 in the early universe (cf. Fig. 5.1).
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Appendix 5.A Renormalization Group Equations for the V-MSSM
The two-loop level renormalization group equations of the V-MSSM are shown here, which are used in our
numerical evaluation in this chapter. As emphasized in Ref. [93], the two-loop level effect is significant
especially for the running of the gaugino masses.

For completeness all the β-functions up to two-loop level of the renormalization group equations are
included. The β-functions of the equations are defined as

dX(Q)
d log Q

=
1

16π2 β
(1) [X] +

1(
16π2)2 β

(2) [X] , (5.47)

where X are one of the parameters and Q is the renormalization scale. Shown are not only the β-functions
for the extra parameters but also corrections to the MSSM β-functions βMSSM, i.e.

β(i)
V-MSSM = β(i)

MSSM + ∆β(i). (5.48)

Note that the definition of the parameters is shown in Eqs. (5.4) and (5.7), and the MSSM β-functions are
listed in Appendix 4.A.

The β-functions are calculated with Susyno 1.1 [87].

5.A.1 Restriction and notation
The following assumptions are employed, as is done for the MSSM β-functions (in Appendix 4.A).

• The R-parity is conserved.

• The scalar soft mass terms m2
X are diagonal,

• For the A-terms aX and the Yukawa coupling YX , all the components but the (3, 3) are neglected.

• The gaugino masses Ma are real.

The DR′ scheme [65] is chosen as the renormalization scheme.

* * *

The following variables are used in the expressions of the β-functions.

Xt := 2a2
t + 2Y2

t

(
m2

Hu
+ (m2

Q)33 + (m2
Ū)33

)
Xb := 2a2

b + 2Y2
b

(
m2

Hd
+ (m2

Q)33 + (m2
D̄)33

)
Xτ := 2a2

τ + 2Y2
τ

(
m2

Hd
+ (m2

L)33 + (m2
Ē)33

)
X′ := 2a′2 + 2Y ′2

(
m2

Hu
+ m2

Q′ + m2
Ū′

)
X′′ := 2a′′2 + 2Y ′′2

(
m2

Hd
+ m2

Q̄′ + m2
U′

)
ã(t,b,τ) := Y(t,b,τ)a(t,b,τ)

ã′(′) := Y ′(′)a′(′)

S := m2
Hu
− m2

Hd
+

3∑
i=1

[
(m2

Q)ii − 2(m2
Ū)ii + (m2

D̄)ii − (m2
L)ii + (m2

Ē)ii

]
S ′ :=

(
m2

Q′ − 2m2
Ū′ + m2

Ē′

)
−

(
m2

Q̄′ − 2m2
U′ + m2

E′
)

S (2) := −Y2
t

(
3m2

Hu
+ (m2

Q)33 − 4(m2
Ū)33

)
+ Y2

b

(
3m2

Hd
− (m2

Q)33 − 2(m2
D̄)33

)
+ Y2

τ

(
m2

Hd
+ (m2

L)33 − 2(m2
Ē)33

)
+

(
3
10
g2

1 +
3
2
g2

2

) m2
Hu
− m2

Hd
−

3∑
i=1

(m2
L)ii

 +

(
1

30
g2

1 +
3
2
g2

2 +
8
3
g2

3

) 3∑
i=1

(m2
Q)ii

−

(
16
15
g2

1 +
16
3
g2

3

) 3∑
i=1

(m2
Ū)ii +

(
2

15
g2

1 +
8
3
g2

3

) 3∑
i=1

(m2
D̄)ii +

6
5
g2

1

3∑
i=1

(m2
Ē)ii
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σ1 :=
1
5
g2

1

3m2
Hu

+ 3m2
Hd

+

3∑
i=1

(
(m2

Q)ii + 8(m2
Ū)ii + 2(m2

D̄)ii + 3(m2
L)ii + 6(m2

Ē)ii

)
σ2 := g2

2

m2
Hu

+ m2
Hd

+

3∑
i=1

(
(3m2

Q)ii + (m2
L)ii

)
σ3 := g2

3

3∑
i=1

(
2(m2

Q)ii + (m2
Ū)ii + (m2

D̄)ii

)
S (2)

tot := S (2) − Y ′2
(
3m2

Hu
+ m2

Q′ − 4m2
Ū′

)
+ Y ′′2

(
3m2

Hd
+ m2

Q̄′ − 4m2
U′

)
+

(
1

30
g2

1 +
3
2
g2

2 +
8
3
g2

3

) (
m2

Q′ − m2
Q̄′

)
−

(
16
15
g2

1 +
16
3
g2

3

) (
m2

Ū′ − m2
U′

)
+

6
5
g2

1

(
m2

Ē′ − m2
E′
)

σtot;1 := σ1 +
1
5
g2

1

(
m2

Q′ + m2
Q̄′ + 8m2

Ū′ + 8m2
U′ + 6m2

Ē′ + 6m2
E′
)

σtot;2 := σ2 + g2
2

(
3m2

Q′ + 3m2
Q̄′

)
σtot;3 := σ3 + g2

3

(
2m2

Q′ + 2m2
Q̄′ + m2

Ū′ + m2
U′

)

5.A.2 One-loop level β-functions

Corrections to the evolution of the MSSM parameters

∆β(1) [gi
]

= 3g3
i (5.49)

∆β(1) [Mi] = 6g2
i Mi (5.50)

∆β(1) [Yt] = 3Y ′2Yt (5.51)

∆β(1) [Yb] = 3Y ′′2Yb (5.52)

∆β(1) [Yτ] = 3Y ′′2Yτ (5.53)

∆β(1) [at] = 3Y ′
(
Y ′at + 2a′Yt

)
(5.54)

∆β(1) [ab] = 3Y ′′
(
Y ′′ab + 2a′′Yb

)
(5.55)

∆β(1) [aτ] = 3Y ′′
(
Y ′′aτ + 2a′′Yτ

)
(5.56)

∆β(1) [µ] = 3µ
(
Y ′2 + Y ′′2

)
(5.57)

∆β(1) [b] = 6µ
(̃
a′ + ã′′

)
+ 3b

(
Y ′2 + Y ′′2

)
(5.58)

∆β(1)
[
m2

Hu

]
=

3
5
g2

1S ′ + 3X′ (5.59)

∆β(1)
[
m2

Hd

]
= 3X′ −

3
5
g2

1S ′ (5.60)

∆β(1)
[
(m2

Q)ii

]
=

1
5
g2

1S ′ (5.61)

∆β(1)
[
(m2

Ū)ii

]
= −

4
5
g2

1S ′ (5.62)

∆β(1)
[
(m2

D̄)ii

]
=

2
5
g2

1S ′ (5.63)

∆β(1)
[
(m2

L)ii

]
= −

3
5
g2

1S ′ (5.64)

∆β(1)
[
(m2

Ē)ii

]
=

6
5
g2

1S ′ (5.65)
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Evolution of the extra parameters

β(1) [Y ′] =

(
3Y2

t + 6Y ′2 −
13
15
g2

1 − 3g2
2 −

16
3
g2

3

)
Y ′ (5.66)

β(1) [Y ′′] =

(
3Y2

b + Y2
τ + 6Y ′′2 −

13
15
g2

1 − 3g2
2 −

16
3
g2

3

)
Y ′′ (5.67)

β(1) [MQ′
]

=

(
Y ′2 + Y ′′2 −

1
15
g2

1 − 3g2
2 −

16
3
g2

3

)
MQ′ (5.68)

β(1) [MU′ ] =

(
2Y ′2 + 2Y ′′2 −

16
15
g2

1 −
16
3
g2

3

)
MU′ (5.69)

β(1) [ME′ ] = −
12
5
g2

1ME′ (5.70)

β(1) [a′] =

(
6̃at +

26
15
g2

1M1 + 6g2
2M2 +

32
3
g2

3M3

)
Y ′ +

(
3Y2

t + 18Y ′2 −
13
15
g2

1 − 3g2
2 −

16
3
g2

3

)
a′ (5.71)

β(1) [a′′] =

(
6̃ab + 2̃aτ +

26
15
g2

1M1 + 6g2
2M2 +

32
3
g2

3M3

)
Y ′′

+

(
3Y2

b + Y2
τ + 18Y ′′2 −

13
15
g2

1 − 3g2
2 −

16
3
g2

3

)
a′′

(5.72)

β(1) [bQ′
]

=

(
2̃a′ + 2̃a′′ +

2
15
g2

1M1 + 6g2
2M2 +

32
3
g2

3M3

)
MQ′

+

(
−

1
15
g2

1 − 3g2
2 −

16
3
g2

3 + Y ′2 + Y ′′2
)

bQ′

(5.73)

β(1) [bU′ ] =

(
4̃a′ + 4̃a′′ +

32
15
g2

1M1 +
32
3
g2

3M3

)
MU′ +

(
−

16
15
g2

1 −
16
3
g2

3 + 2Y ′2 + 2Y ′′2
)

bU′ (5.74)

(5.75)

β(1) [bE′ ] =
24
5
g2

1M1ME′ −
12
5
g2

1bE′ (5.76)

β(1)
[
m2

Q′
]

= −
2

15
g2

1M2
1 − 6g2

2M2
2 −

32
3
g2

3M2
3 +

1
5
g2

1(S + S ′) + X′ (5.77)

β(1)
[
m2

Ū′

]
= −

32
15
g2

1M2
1 −

32
3
g2

3M2
3 −

4
5
g2

1(S + S ′) + 2X′ (5.78)

β(1)
[
m2

Ē′

]
= −

24
5
g2

1M2
1 +

6
5
g2

1(S + S ′) (5.79)

β(1)
[
m2

Q̄′

]
= −

2
15
g2

1M2
1 − 6g2

2M2
2 −

32
3
g2

3M2
3 −

1
5
g2

1(S + S ′) + X′ (5.80)

β(1)
[
m2

U′
]

= −
32
15
g2

1M2
1 −

32
3
g2

3M2
3 +

4
5
g2

1(S + S ′) + 2X′ (5.81)

β(1)
[
m2

E′
]

= −
24
5
g2

1M2
1 −

6
5
g2

1(S + S ′) (5.82)

5.A.3 Two-loop level β-functions
Corrections to the evolution of the MSSM parameters

∆β(2) [g1
]

=

(
23
5
g2

1 +
3
5
g2

2 +
48
5
g2

3 −
26
5

Y ′2 −
26
5

Y ′′2
)
g3

1 (5.83)

∆β(2) [g2
]

=

(
1
5
g2

1 + 21g2
2 + 16g2

3 − 6Y ′2 − 6Y ′′2
)
g3

2 (5.84)

∆β(2) [g3
]

=

(
6
5
g2

1 + 6g2
2 + 34g2

3 − 4Y ′2 − 4Y ′′2
)
g3

3 (5.85)
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∆β(2) [M1] =

[
52
5

(̃
a′ − Y ′2M1 + ã′′ − Y ′′2M1

)
+

92
5
g2

1M1 +
6
5
g2

2 (M1 + M2) +
96
5
g2

3 (M1 + M3)
]
g2

1

(5.86)

∆β(2) [M2] =

[
12

(̃
a′ − Y ′2M2 + ã′′ − Y ′′2M2

)
+

2
5
g2

1 (M1 + M2) + 84g2
2M2 + 32g2

3 (M2 + M3)
]
g2

2 (5.87)

∆β(2) [M3] =

[
8
(̃
a′ − Y ′2M3 + ã′′ − Y ′′2M3

)
+

12
5
g2

1 (M1 + M3) + 12g2
2 (M2 + M3) + 136g2

3M3

]
g2

3

(5.88)

∆β(2) [Yt] =

[
13
5
g4

1 + 9g4
2 + 16g4

3 +

(
4
5
g2

1 + 16g2
3 − 9Y ′2 − 9Y2

t

)
Y ′2 − 3Y2

b Y ′′2
]
yt (5.89)

∆β(2) [Yb] =

[
7
5
g4

1 + 9g4
2 + 16g4

3 − 3Y2
t Y ′2 +

(
4
5
g2

1 + 16g2
3 − 9Y2

b − 9Y ′′2
)

Y ′′2
]

Yb (5.90)

∆β(2) [Yτ] =

[
27
5
g4

1 + 9g4
2 +

(
4
5
g2

1 + 16g2
3 − 9Y2

τ − 9Y ′′2
)

Y ′′2
]

Yτ (5.91)

∆β(2) [at] =
13
5
g4

1 (at − 4Yt M1) + 9g4
2 (at − 4Yt M2) + 16g4

3 (at − 4Yt M3)

+
4
5
g2

1Y ′
(
Y ′at + 2a′Yt − 2M1Y ′Yt

)
+ 16g2

3Y ′
(
Y ′at + 2a′Yt − 2M3Y ′Yt

)
+ Y ′

(
−27Y ′atY2

t − 9Y ′3at − 36a′Y ′2Yt − 18a′Y3
t

)
+ YbY ′′

(
−3Y ′′atYb − 6Y ′′Ytab − 6a′′YtYb

)
(5.92)

∆β(2) [ab] =
7
5
g4

1 (ab − 4YbM1) + 9g4
2 (ab − 4YbM2) + 16g4

3 (ab − 4YbM3)

+
4
5
g2

1Y ′′
(
Y ′′ab + 2a′′Yb − 2M1Y ′′Yb

)
+ 16g2

3Y ′′
(
Y ′′ab + 2a′′Yb − 2M3Y ′′Yb

)
+ YtY ′

(
−3Y ′Ytab − 6Y ′atYb − 6a′YtYb

)
+ Y ′′

(
−27Y ′′abY2

b − 9Y ′′3ab − 36a′′Y ′′2Yb − 18a′′Y3
b

)
(5.93)

∆β(2) [aτ] =
27
5
g4

1 (aτ − 4YτM1) + 9g4
2 (aτ − 4YτM2)

+
4
5
g2

1Y ′′
(
Y ′′aτ + 2a′′Yτ − 2M1Y ′′Yτ

)
+ 16g2

3Y ′′
(
Y ′′aτ + 2a′′Yτ − 2M3Y ′′Yτ

)
+ Y ′′

(
−27Y ′′aτY2

τ − 9Y ′′3aτ − 36a′′Y ′′2Yτ − 18a′′Y3
τ

) (5.94)

∆β(2) [µ] =

[
9
5
g4

1 + 9g4
2 +

4
5
g2

1

(
Y ′2 + Y ′′2

)
+ 16g2

3

(
Y ′2 + Y ′′2

)
− 9

(
Y ′4 + Y ′′4

)]
µ (5.95)

∆β(2) [b] =

[
−

36
5
g4

1M1 − 36g4
2M2 − 36̃a′Y ′2 − 36̃a′′Y ′′2

+
8
5
g2

1

(̃
a′ + ã′′ −

(
Y ′2 + Y ′′2

)
M1

)
+ 32g2

3

(̃
a′ + ã′′ −

(
Y ′2 + Y ′′2

)
M3

) ]
µ

+

[
9
5
g4

1 + 9g4
2 +

4
5
g2

1

(
Y ′2 + Y ′′2

)
+ 16g2

3

(
Y ′2 + Y ′′2

)
− 9

(
Y ′4 + Y ′′4

)]
b

(5.96)

∆β(2)
[
m2

Hu

]
=

54
5
g4

1M2
1 + 54g4

2M2
2 +

6
5
g2

1S ′ +
3
5
g2

1σ
′
1 + 3g2

2σ
′
2

+
4
5
g2

1

(
X′ − 4M1ã′ + 4M2

1Y ′2
)

+ 16g2
3

(
X′ − 4M3ã′ + 4M2

3Y ′2
)
− 36̃a′2 − 18Y ′2X′

(5.97)
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∆β(2)
[
m2

Hd

]
=

54
5
g4

1M2
1 + 54g4

2M2
2 −

6
5
g2

1S ′ +
3
5
g2

1σ
′
1 + 3g2

2σ
′
2

+
4
5
g2

1

(
X′′ − 4M1ã′′ + 4M2

1Y ′′2
)

+ 16g2
3

(
X′′ − 4M3ã′′ + 4M2

3Y ′′2
)
− 36̃a′′2 − 18Y ′′2X′′

(5.98)

∆β(2)
[
(m2

Q)ii

]
=

6
5
g4

1M2
1 + 54g4

2M2
2 + 96g4

3M2
3 + g2

1

(
2
5

S ′ +
σ′1
15

)
+ 3g2

2σ
′
2 +

16
3
g2

3σ
′
3

+

〈〈
− 12̃a′ãt − 3Y2

t X′ − 12̃a′′ãb − 3Y2
b X′′ − 3Y ′′2Xb − 3Y ′2Xt

〉〉
for i = 3

(5.99)

∆β(2)
[
(m2

Ū)ii

]
=

96
5
g4

1M2
1 + 96g4

3M2
3 −

8
5
g2

1S ′ +
16
15
g2

1σ
′
1 +

16
3
g2

3σ
′
3

+

〈〈
− 24̃a′ãt − 6Y2

t X′ − 6Y ′2Xt

〉〉
for i = 3

(5.100)

∆β(2)
[
(m2

D̄)ii

]
=

24
5
g4

1M2
1 + 96g4

3M2
3 +

4
5
g2

1S ′ +
4
15
g2

1σ
′
1 +

16
3
g2

3σ
′
3

+

〈〈
− 24̃a′′ãb − 6Y2

b X′′ − 6Y ′′2Xb

〉〉
for i = 3

(5.101)

∆β(2)
[
(m2

L)ii

]
=

54
5
g4

1M2
1 + 54g4

2M2
2 −

6
5
g2

1S ′ +
3
5
g2

1σ
′
1 + 3g2

2σ
′
2

+

〈〈
− 12̃a′′ãτ − 3Y2

τX′′ − 3Y ′′2Xτ

〉〉
for i = 3

(5.102)

∆β(2)
[
(m2

Ē)ii

]
=

216
5
g4

1M2
1 +

12
5
g2

1S ′ +
12
5
g2

1σ
′
1 +

〈〈
− 24̃a′′ãτ − 6Y2

τX′′ − 6Y ′′2Xτ

〉〉
for i = 3

(5.103)

Evolution of the extra parameters

β(2) [Y ′] =

[
3913
450

g4
1 +

33
2
g4

2 +
128
9
g4

3 + g2
1g

2
2 +

136
45

g2
1g

2
3 + 8g2

2g
2
3

+

(
4
5

Y2
t +

6
5

Y ′2
)
g2

1 + 6g2
2Y ′2 + 16g2

3(Y2
t + Y ′2) − 3Y2

t Y2
b − 9Y4

t − 9Y2
t Y ′2 − 22Y ′4

]
Y ′

(5.104)

β(2) [Y ′′] =

[
3913
450

g4
1 +

33
2
g4

2 +
128
9
g4

3 + g2
1g

2
2 +

136
45

g2
1g

2
3 + 8g2

2g
2
3

+ g2
1

(
−

2
5

Y2
b +

6
5

Y2
τ +

6
5

Y ′′2
)

+ 6g2
2Y ′′2 + 16g2

3(Y2
b + Y ′′2) − 9Y4

b − 3Y4
τ

− 3Y2
t Y2

b + Y ′′2
(
−9Y2

b − 3Y2
τ − 22Y ′′2

) ]
Y ′′

(5.105)

β(2) [MQ′
]

=

[
289
450

g4
1 +

33
2
g4

2 +
128

9
g4

3 +
1
5
g2

1g
2
2 +

16
45
g2

1g
2
3 + 16g2

2g
2
3

+
4
5
g2

1(Y ′2 + Y ′′2) − 3Y ′2Y2
t − 3Y ′′2Y2

b − Y ′′2Y2
τ − 5Y ′4 − 5Y ′′4

]
MQ′

(5.106)
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β(2) [MU′ ] =

[
2432
225

g4
1 +

128
9
g4

3 +
256
45

g2
1g

2
3 −

2
5
g2

1

(
Y ′2 + Y ′′2

)
+ 6g2

2

(
Y ′2 + Y ′′2

)
− 6Y ′2Y2

t − 6Y ′′2Y2
b − 2Y ′′2Y2

τ − 8Y ′4 − 8Y ′′4
]
MU′

(5.107)

β(2) [ME′ ] =
648
25

g4
1ME′ (5.108)

β(2) [a′] =
3913
450

g4
1
(
a′ − 4Y ′M1

)
+

33
2
g4

2
(
a′ − 4Y ′M2

)
+

128
9
g4

3
(
a′ − 4Y ′M3

)
+ 8g2

2g
2
3
(
a′ − 2Y ′M2 − 2Y ′M3

)
+ g2

1g
2
2
(
a′ − 2Y ′M1 − 2Y ′M2

)
+

136
45

g2
1g

2
3
(
a′ − 2Y ′M1 − 2Y ′M3

)
+ g2

1

(
8
5

Y ′ãt +
4
5

a′Y2
t −

8
5

M1Y ′Y2
t +

18
5

ã′Y ′ −
12
5

M1Y ′3
)

+ g2
2

(
18̃a′Y ′ − 12M2Y ′3

)
+ g2

3

(
32Y ′ãt + 16a′Y2

t − 32M3Y ′Y2
t + 48̃a′Y ′ − 32M3Y ′3

)
− 6Y ′ãtY2

b − 6Y ′Y2
t ãb − 3a′Y2

t Y2
b − 18Y ′3ãt − 36Y ′ãtY2

t − 27̃a′Y ′Y2
t − 9̃a′Y3

t − 110a′Y ′4

(5.109)

β(2) [a′′] =
3913
450

g4
1
(
a′′ − 4Y ′′M1

)
+

33
2
g4

2
(
a′′ − 4Y ′′M2

)
+

128
9
g4

3
(
a′′ − 4Y ′′M3

)
+ 8g2

2g
2
3
(
a′′ − 2Y ′′M2 − 2Y ′′M3

)
+ g2

1g
2
2
(
a′′ − 2Y ′′M1 − 2Y ′′M2

)
+

136
45

g2
1g

2
3
(
a′′ − 2Y ′′M1 − 2Y ′′M3

)
+ g2

1

(
4
5

(
Y2

b − 3Y2
τ − 3Y ′′2

)
Y ′′M1 −

4
5

Y ′′abYb +
12
5

Y ′′aτYτ +

(
18
5

Y ′′ −
2
5

Y2
b +

6
5

Y2
τ

)
a′′

)
+ g2

2

(
18Y ′′ã′′ − 12M2Y ′′3

)
+ 16g2

3

(
3Y ′′ã′′ + 2Y ′′abYb + a′′Y2

b − 2M3Y ′′Y2
b − 2M3Y ′′3

)
− 27Y ′′ã′′Y2

b − 9Y ′′ã′′Y2
τ − 110Y ′′3ã′′ − 6Y ′′atYtY2

b − 6Y ′′Y2
t abYb − 3a′′Y2

t Y2
b

− 18Y ′′3abYb − 36Y ′′abY3
b − 9a′′Y4

b − 6Y ′′3aτYτ − 12Y ′′aτY3
τ − 3a′′Y4

τ

(5.110)

β(2) [bQ′
]

=

[
−

578
225

g4
1M1 − 66g4

2M2 −
512
9
g4

3M3 −
2
5
g2

1g
2
2 (M1 + M2) −

32
45
g2

1g
2
3 (M1 + M3)

− 32g2
2g

2
3 (M2 + M3) +

8
5
g2

1

(̃
a′ + ã′′ − M1Y ′2 − M1Y ′′2

)
− 6Y ′2ãt − 6̃a′Y2

t − 6Y ′′2ãb − 6̃a′′Y2
b − 2Y ′′2ãτ − 2̃a′′Y2

τ − 20̃a′Y ′2 − 20̃a′′Y ′′2
]
MQ′

+

[
289
450

g4
1 +

33
2
g4

2 +
128

9
g4

3 +
1
5
g2

1g
2
2 +

16
45
g2

1g
2
3 + 16g2

2g
2
3

+
4
5
g2

1(Y ′2 + Y ′′2) − 3Y ′2Y2
t − 3Y ′′2Y2

b − Y ′′2Y2
τ − 5Y ′4 − 5Y ′′4

]
bQ′

(5.111)
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β(2) [bU′ ] =

[
−

9728
225

g4
1M1 −

512
9
g4

3M3 −
512
45

g2
1g

2
3 (M1 + M3)

−
4
5
g2

1

(̃
a′ + ã′′ − M1Y ′2 − M1Y ′′2

)
+ 12g2

2

(̃
a′ + ã′′ − M2Y ′2 − M2Y ′′2

)
− 32Y ′2ã′ − 32Y ′′2ã′′ − 12Y ′2ãt − 12Y ′′2ãb − 4Y ′′2ãτ − 12̃a′Y2

t − 12̃a′′Y2
b − 4̃a′′Y2

τ

]
MU′

+

[
2432
225

g4
1 +

128
9
g4

3 +
256
45

g2
1g

2
3 −

2
5
g2

1

(
Y ′2 + Y ′′2

)
+ 6g2

2

(
Y ′2 + Y ′′2

)
− 6Y ′2Y2

t − 6Y ′′2Y2
b − 2Y ′′2Y2

τ − 8Y ′4 − 8Y ′′4
]
bU′

(5.112)

β(2) [bE′ ] =
648
25

g4
1bE′ −

2592
25

g4
1M1ME′ (5.113)

β(2)
[
m2

Q′
]

=
289
75

g4
1M2

1 + 87g4
2M2

2 +
160
3
g4

3M2
3 +

2
5
g2

1g
2
2

(
M2

1 + M2
2 + M1M2

)
+

32
45
g2

1g
2
3

(
M2

1 + M2
3 + M1M3

)
+ 32g2

2g
2
3

(
M2

2 + M2
3 + M2M3

)
+

2
5
g2

1S (2)
tot +

1
15
g2

1σtot;1 + 3g2
2σtot;2 +

16
3
g2

3σtot;3

+
4
5
g2

1

(
X′ − 4M1ã′ + 4M2

1Y ′2
)
− 12̃a′ãt − 3Y2

t X′ − 3Y ′2Xt − 20̃a′2 − 10Y ′2X′

(5.114)

β(2)
[
m2

Ū′

]
=

4864
75

g4
1M2

1 +
160
3
g4

3M2
3 +

512
45

g2
1g

2
3

(
M2

1 + M2
3 + M1M3

)
−

8
5
g2

1S (2)
tot +

16
15
g2

1σtot;1 +
16
3
g2

3σtot;3 −
2
5
g2

1

(
X′ − 4M1ã′ + 4M2

1Y ′2
)

+ 6g2
2

(
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Appendix 5.B Decay Rates of t′
1

Here are the decay rates of the lightest vector-like quark in the V-MSSM, t′1, summarized, which are cited
from Ref. [93]. The relevant mixing parameters and the mass matrix are, as already referred,

W = −Y ′HuQ′Ū′ + MQ′Q′Q̄′ + MU′Ū′U′ − εuHuQ3Ū′ − ε′uHuQ′Ū3 + εdHdQ′D̄3; (5.120)

−L ⊃
(
Q′u U′ tL

)
Mt
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Ū′

t̄R

 +
(
Q′d bL
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Q̄′d
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+ H.c.; (5.121)

Mt :=

MQ′ Y ′vu ε′uvu
0 MU′ 0
0 εuvu Ytvu

 , Mb :=
(
−MQ′ εdvd

0 Ybvd

)
. (5.122)

Utilizing the singular value decomposition method, we can diagonalize these two matrices with unitary
matrices R,R, L′,R′ as

L∗MtR† =


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. (5.123)

The gauge interactions are extracted to be
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(5.124)

Therefore, we obtain the decay rates as, defining the following coupling:
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gZ
t′1t† :=

gZ

2

(
L∗21L11 + L∗23L13

)
, gZ

t̄′1 t̄† := −
gZ

2
R∗11R21, (5.126)
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where

λ(x, y, z) := x2 + y2 + z2 − 2xy − 2yz − 2zx, rX =
m2

X

m2
t′1

. (5.132)
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Chapter 6

Coda

In this coda, the theme of this dissertation is repeated.

* * *

On 4th July 2012, the ATLAS and the CMS collaborations claimed that they respectively observed a new
boson with a mass approximately 126 GeV in the search for the Standard Model Higgs boson [1, 2], which
completes the Standard Model [3, 4]. This model has the electroweak symmetry breaking as its heart, which
is governed by the Higgs mechanism, and explains almost all of Nature.

However, we already know that the Standard Model is not the ultimate theory. We have the Dark Matter
problem, the fine-tuning problem, and the muon g − 2 discrepancy. Also the mechanism which generated
current baryon asymmetry of our Universe is still unknown. Moreover, we have four forces, not one. To
achieve the grand unification, the slight mismatch on gauge coupling unification should be resolved. These
topics were discussed in Chapter 2.

Now we have the LHC experiments as a powerful tool to investigate the next theory beyond the Standard
Model. In this dissertation the ATLAS detector [41, 42], a general-purpose detector for the LHC, is examined
in Chapter 3. There we saw that the discovery of the Higgs boson was realized with help from the increases
of the energy and the collision rate in the 2012 run, and also the importance of b-tagging was emphasized.

Then we reviewed the SUSY, a silver bullet for the problems in the Standard Model. It solves the
hierarchy problem in a miraculous manner, and as we saw in Chapter 4, the muon g − 2 problem and
the slight mismatch on gauge coupling unification can be solved with the SUSY. Moreover, a promising
candidate for the Dark Matter is provided.

However, we have not detected any hints of the SUSY at the LHC. Now the colored superparticles are
highly constrained as mg̃ & 900 GeV and mq̃ & 1400 GeV, which indicates that the SUSY is heavier than
expected. We saw that this indication is supported also by the Higgs boson having a mass of 126 GeV.
Under the no-mixing scenario, the stop mass is required to be O(10) TeV. Even with the maximal-mixing of
Xt ∼ ±

√
6mt̃, it should be ∼ 1–2 TeV. There the argument of the little hierarchy is not fulfilled.

Two possibilities were introduced there. One was the heavy-colored light-non-colored scenario, which
can be investigated with searches focusing on pair-production of charginos, neutralinos, and sleptons via
electroweak interactions. Such searches do not need higher energy, but require a higher luminosity; the
data expected in the 13–14 TeV run, corresponding to O(100) fb−1, would help this direction, and also the
HL-LHC is of great importance (cf. Sec. 3.3).

However, this scenario is not preferred from a theoretical viewpoint because it does not fully respect the
SU(5)-GUTs. As a possibility which respects the SU(5)-GUTs daydream, there the V-MSSM scenario, an
extension of the MSSM with vector-like matters, was introduced, and was investigated in Chapter 5 as the
main dish of this dissertation.

We saw that in this model the Higgs mass can be raised by the extra vector-like quarks. It allows us to
explain the muon g − 2 anomaly even under the GMSB framework, which is a very promising framework
for its freedom from the SUSY CP- and flavor problems, but disfavored because it cannot simultaneously
realize the 126 GeV Higgs and the muon g − 2 explanation. There, the “V” resurrects the GMSB.
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Fig. 5.7 was the conclusive figure of this dissertation. There it was obviously shown that the 126 GeV
Higgs boson can be realized with keeping the SUSY explanation of the muon g − 2 at the 2σ-level, while
the 1σ-level explanation was excluded by the LHC SUSY searches. Also it was emphasized that the mass
parameter MV , which governs the masses of the vector-like quarks and the vector-like lepton, is constrained
as MV . 1.2 TeV. This means the lightest vector-like quark t′1 should be lighter than . 1.1 TeV, which is
within the reach at the 14 TeV LHC.

Then collider searches for the vector-like quarks were investigated. We saw that the search performed
by the ATLAS collaboration [132] was very interesting and promising, and that improvements and better
understanding of b-tagging algorithms is awaited for further progress.

* * *

On 17 December 2012, the LHC was shut down to prepare for collisions with ECM = 14 TeV, leaving
the following message on the LHC monitor:

*** End of operation for 2012! ***
See you again briefly for p-Pb in 2013.
High energy proton proton physics
will be resumed in 2015.
So long and thanks for all the fish.

In 2015, we will obtain a much more powerful tool to investigate new physics beyond the Standard Model.
There SUSY searches would strikingly proceed, and we expect we will obtain many clues for the next
theories. Especially, the fate of the V-GMSB scenario is expected to be determined.

Now we have to wait for three years, but now, contrary to that after the accident in 2009, we have data,
which are enough to allow us to find the “tail” of the physics beyond the Standard Model buried inside them.
We should exhaust the obtained data to be ready for the 14 TeV run starting in, hopefully, 2015.
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