

BSM at Colliders

Sho IWAMOTO (岩本 祥)

18-19 Oct. 2016

"Search for New Physics through the Higgs boson" @ Gwangju

This 2-hour presentation is based on my works

- M. Endo, K. Hamaguchi, SI, N. Yokozaki, Higgs mass, muon g-2, and LHC prospects in gauge mediation models with vector-like matters [1112.5653]
- > M. Endo, K. Hamaguchi, SI, T. Yoshinaga, Muon g-2 vs LHC in Supersymmetric Models [1303.4256]
- > J. L. Feng, SI, Y. Shadmi, S. Tarem, Long-Lived Sleptons at the LHC and a 100 TeV Proton Collider [1505.02996]
- M. Abdullah, J. L. Feng, SI, B. Lillard, Heavy Bino Dark Matter and Collider Signals in the MSSM with Vector-like 4th-Generation Particles [1608.00283]

and many works by others. Several citations could be missing; sorry for the incompleteness.

BSM at Colliders?

<u>BSM</u>

≈2.3 MeV/c² ≈126 GeV/c² ≈1.275 GeV/c2 ≈173.07 GeV/c2 0 mass charge → 2/3 2/3 2/3 0 0 C t u Q 1/2 1/2 spin → 1/2 1 0 Higgs boson charm top gluon up #4.8 MeV/c2 ≈95 MeV/c² =4.18 GeV/c2 0 QUARKS -1/3 -1/3 -1/3 0 S γ b C 1/2 1/2 1/2 1 bottom photon down strange 0.511 MeV/c2 1.777 GeV/c2 105.7 MeV/c2 91.2 GeV/c2 -1 -1 -1 0 e τ 1/2 1/2 1/2 BOSONS 1 = our electron Z boson muon tau <2.2 eV/c2 <0.17 MeV/c2 Universe <15.5 MeV/c2 80.4 GeV/c2 EPTONS. 0 0 0 ±1 GAUGE v_{e} 1/2 1/2 1/2 1 electron neutrino muon neutrino tau neutrino W boson

≈2.3 MeV/c² ≈1.275 GeV/c2 ≈173.07 GeV/c2 0 ≈126 GeV/c2 mass charge → 2/3 2/3 2/3 0 0 C u t U 1/2 1/2 spin \rightarrow 1/2 1 0 Higgs boson charm top gluon up ≈4.8 MeV/c2 ≈95 MeV/c² =4.18 GeV/c2 0 QUARKS -1/3 -1/3 -1/3 0 S γ b C 1/2 1/2 1/2 1 bottom photon down strange 0.511 MeV/c2 1.777 GeV/c2 105.7 MeV/c2 91.2 GeV/c2 dark matter? -1 -1 -1 0 τ e 1/2 1/2 1/2 1 BOSONS electron Z boson our muon tau <2.2 eV/c2 <0.17 MeV/c2 <15.5 MeV/c2 80.4 GeV/c2 Universe EPTONS. 0 0 0 ±1 GAUGE v_{e} 1/2 1/2 1/2 1 electron muon neutrino tau neutrino W boson neutrino

BSM

?

Many hints of BSM

- ✓ Dark matter
- ✓ Dark energy
- ✓ Neutrino mass
- ✓ Gauge coupling unification
- ✓ Higgs mass ("naturalness")
- ✓ Muon "g−2"

BSM

?

SUSY

- composite Higgs
- composite DM
- extra dimensions
- extended Higgs

Many hints of BSM

- ✓ Dark matter
- ✓ Dark energy
- ✓ Neutrino mass
- ✓ Gauge coupling unification
- ✓ Higgs mass ("naturalness")
- ✓ Muon "g−2"

BSM at Colliders?

- SUSY
- composite Higgs
- composite DM
- extra dimensions
- extended Higgs

- LHC
- future pp collider
- future ee collider

BSM at Colliders?

[long-lived charged/colored particle]

➤ unstable

- \rightarrow decay products
- resonance
- "more exotic" signatures

deviation in known parameters

Higgs-, top-, and EW-sectors.

high energy

 $_{\rm HC}$

future pp collider

future ee collider

high precision

new heavy particles

> stable & neutral $\rightarrow \not E$

➤ stable & charged

 \rightarrow exotic tracks (LLCP)

[long-lived charged/colored particle]

≻unstable

- \rightarrow decay products
- resonance
- "more exotic" signatures

deviation in known parameters

Higgs-, top-, and EW-sectors.

high energy

future pp collider

 $_{\rm HC}$

SUSY

- composite Higgs
- composite DM
- extra dimensions
- extended Higgs

- ✓ Dark matter
- ✓ Dark energy
- ✓ Neutrino mass
- ✓ Gauge coupling unification
- ✓ Higgs mass ("naturalness")
- ✓ Muon "g−2"

SUSY

- composite Higgs
- composite DM
- extra dimensions
- extended Higgs

- ✓ Dark matter
- ✓ Dark energy
- ✓ Neutrino mass
- ✓ Gauge coupling unification
- ✓ Higgs mass ("naturalness")
- ✓ Muon "g−2"

Outline

1) **E**T

2) LLCP

3) more exotic

mET : primary search target @ LHC We cannot "see" mET.

→ mET + something

- from ISR: "mono-jet" "mono-photon" etc.
 DM searches at LHC (Shih-Chieh Hsu's talk)
- > from cascade decay: "SUSY" searches

"SUSY" searches : something + mET

the list of "something"

	Visit us: CMS Public Website, CMS Ph	papers					
	K	Short T					
Recent Super	rsymmetry Preliminary Results	1-2 taus					
	Sound for natural concernmenter in create with top quark pairs and alectons in an						
CMS-PAS-SUS-15-009	Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at $\sqrt{s} = 8$ TeV						
CMS-PAS-SUS-16-025	Search for new physics in the compressed mass spectra scenario using events with two soft	LLP (pix					
	opposite-sign leptons and missing transverse momentum at 13 TeV						
CMS-PAS-SUS-16-028	Search for direct top squark pair production in the single lepton final state at $\sqrt{s} = 13 \text{ TeV}$	multi b-					
CMS-PAS-SUS-16-021							
	Search for new physics in final states with two opposite-sign, same-havor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV	0L 2-6 j					
CMS-PAS-SUS-16-029	Search for direct top squark pair production in the fully hadronic final state in proton-	monojet					
	proton collisions at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 12.9 fb ⁻¹	LLP with					
CMS-PAS-SUS-16-026	Search for electroweak production of charginos and neutralinos in the WH final state at 13	2 same					
	lev	0L 7-10					
CMS-PAS-SUS-16-024	Search for electroweak SUSY production in multilepton final states in 12.9 fb $^{-1}$ of pp collision data at $\sqrt{s}=13~{\rm TeV}$	confere					
CMS-PAS-SUS-16-022	Search for supersymmetry with multileptons in 13 TeV data	Short T					
CMS-PAS-SUS-16-016	An inclusive search for new phenomena in final states with one or more jets and missing	2L+jets					
	transverse momentum at $\sqrt{s} = 13$ TeV with the $\alpha_{\rm T}$ variable						
CMS-PAS-SUS-16-015	Search for new physics in the all-hadronic final state with the M_{72} variable	EWK di-					
CMS-PAS-SUS-16-014	County for any and the internet with interne	0L 8-10					
	Search for supersymmetry in events with jets and missing transverse momentum in proton-proton collisions at 13 TeV						
CMS-PAS-SUS-16-012	Search for supersymmetry in events with a Higgs decaying to two photons using the razor	OL 2-6 j					
	variables	1L 2-6 j					
CMS-PAS-SUS-16-013	Search for <i>R</i> -parity-violating SUSY in final states with zero or one lepton and large multiplicity of jets and b-tagged jets	SS/3L +					
		0/1L + 3					
CMS-PAS-SUS-16-019	Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2016	photon					
CMS-PAS-SUS-16-030	Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at $\sqrt{s}=13$ TeV						
						CMS-PAS-SUS-16-020	Search for SUSY in same-sign dilepton events with 12.9 fb ⁻¹ of no collision data at 13 TeV
and any approximation of the second sec	stop2 (3						
CMS-PAS-SUS-16-023	Search for supersymmetry in final states with at least one photon and E_{T}^{miss} in pp collisions at $\sqrt{\pi} = 13 \text{ TeV}$						

Short Title of Paper	Date	√s () L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
1-2 taus + Etmiss	07/2016	13	3.2	1607.05979	Link (+data)	Submitted to EPJC
di-photon + MET	6/2016	13	3.2	1606.09150	Linke	Accepted by EPJC
2b + MET	6/2016	13	3.2	1606.08772	Link (+data)	EPJC, (2016) 76:547 🗗
LLP (pixel+Tile)	6/2016	13	3.2	1606.05129	Link (+data)	Physics Letters B (2016), pp. 647-665
1L stop	6/2016	13	3.2	1606.03903 🕫	Link (+data)	Phys. Rev. D 94 (2016) 052009
multi b-jets	5/2016	13	3.2	1605.09318	Link (+data)	Phys. Rev. D 94 032003
1L 2-6 jets	5/2016	13	3.2	1605.04285	Link (+data)	Accepted by EPJC
0L 2-6 jets	5/2016	13	3.2	1605.03814	Link (+data)	Eur. Phys. J. C (2016) 76: 392
monojet (compressed squarks) NEW	4/2016	13	3.2	1604.07773	Link	Phys. Rev. D 94 (2016) 032005
LLP with pixel dE/dx	4/2016	13	3.2	1604.04520	Link (+data)	Phys. Rev. D 93, 112015 (2016)
2 same sign or 3 leptons	2/2016	13	3.2	1602.09058	Link (+data)	EPJ C, 76(5), 1-2612
0L 7-10 jets	2/2016	13	3.2	1602.06194	Link (+data)	Phys. Lett. B 757 (2016) 334

onference notes

Short Title of preliminary conference note/paper	Date	√s ()	L (fb ⁻¹)	Document	Plots
2L+jets+MET (Z/edge)	9/2016	13	14.7	ATLAS-CONF-2016-098	Link
EWK 2/3L	9/2016	13	14.8	ATLAS-CONF-2016-096	Link
EWK di-tau	9/2016	13	14.8	ATLAS-CONF-2016-093	Link
0L 8-10 jets (RPC gluinos)	9/2016	13	18.2	ATLAS-CONF-2016-095	Link
RPV 1L+jets	9/2016	13	14.8	ATLAS-CONF-2016-094	Link
OL 2-6 jets (squark/gluinos)	8/2016	13	13.3	ATLAS-CONF-2016-078	Link
1L 2-6 jets (squark/gluinos)	8/2016	13	14.8	ATLAS-CONF-2016-054	Link
SS/3L + jets (squarks/gluinos)	8/2016	13	13.2	ATLAS-CONF-2016-037	Link
0/1L + 3b jets (squarks/gluinos)	8/2016	13	14.8	ATLAS-CONF-2016-052	Link
photon + jets	8/2016	13	13.3	ATLAS-CONF-2016-066	Link
stop OL	8/2016	13	13.3	ATLAS-CONF-2016-077	Link
stop 1L	8/2016	13	13.3	ATLAS-CONF-2016-050	Link
stop 2L	8/2016	13	13.3	ATLAS-CONF-2016-076	Link
stop2 (3L)	8/2016	13	13.3	ATLAS-CONF-2016-038	Link
stop stau	8/2016	13	13.3	ATLAS-CONF-2016-048	Link
4 lepton (RPV EWK)	8/2016	13	13.3	ATLAS-CONF-2016-075	Link
multijet (RPV)		13	14.8	ATLAS-CONF-2016-057	Link
Stop to bs (RPV)		13	15.6	ATLAS-CONF-2016-084	Link
	La serie a	1.1.2	1 4 4	in the fairs have been	

"SUSY" searches : something + mET

... What is "something"?

hep-ex people: We will look at **anything** we can see! ... **if we had infinite time**.

"what should we see at first?"

 \rightarrow hep-ph people will answer

based on their theory

■ A theory : SUSY (supersymmetry)

SM +SUSY → MSSM

SUSY

SM =

QUARKS

EPTONS

0.511 MeV/c2

<2.2 eV/c2

е

electron

electron

-1

1/2

0

1/2

[Standard Model] ≈126 GeV/c2 mass → ≈2.3 MeV/c² ≈1.275 GeV/c2 ≈173.07 GeV/c2 0 charge → 2/3 2/3 2/3 0 1/2 1/2 spin $\rightarrow 1/2$ Higgs boson charm gluon top up =4.8 MeV/c2 ≈95 MeV/c² ≈4.18 GeV/c² 0 -1/3 -1/3 -1/3 0 1/2 1/2 1/2 down strange bottom photon

1.777 GeV/c2 91.2 GeV/c2 -1 0 1/2 Z boson tau muon <15.5 MeV/c2 80.4 GeV/c²

±1

BOSONS

DGE

tau neutrino B W boson Image by MissBJ [CC BY 3.0], via Wikimedia Commons

28/134

(changes were made by S.I.)

muon neutrino neutrino

0

1/2

105.7 MeV/c2

<0.17 MeV/c2

-1

1/2

0

[Minimal Supersymmetric Standard Model]

■ MSSM =

Image by MissBJ [CC BY 3.0], via Wikimedia Commons (changes were made by S.I.) 29/134

SUSY (neutralino) $= \widetilde{B} \oplus \widetilde{W}^3 \oplus \widetilde{H}_d \oplus \widetilde{H}_u$ $\widetilde{\chi}_{1,2}^{\pm}$ (chargino) $= \widetilde{W}^{\pm} \oplus \widetilde{H}^{\pm}$ 0020112 ≈4.8 MeV/c2 ≈4.18 GeV/c2 ≈95 MeV/c² QUARKS -1/3 -1/3 -1/3 1/2 1/2 1/2 bottom photon down strange 1.777 GeV/c2 91.2 GeV/c2 0.511 MeV/c2 105.7 MeV/c2 -1 1/2 /2 Z boson electron muon tau s 0 <2.2 eV/c2 <15.5 MeV/c² 80.4 GeV/c² <0.17 MeV/c² **EPTONS** 0 ±1 1/2 electro tau muor W boson neutrino neutrino neutrino Ē

Image by <u>MissBJ</u> [<u>CC BY 3.0</u>], via <u>Wikimedia Commons</u> (changes were made by S.I.)

- Why SUSY?
 - ✓ Dark matter
 - ✓ Dark energy
 - √(Neutrino mass)
 - ✓ Gauge coupling unification
 - ✓ Higgs mass "naturalness"
 - ✓ Muon "g−2"

3) more exotic

$$m_{h}^{2} \sim m_{\text{bare}}^{2} + \Delta m_{h}^{2}$$

$$10^{4} \text{ GeV}^{2} \qquad \text{cut-off (Planck or GUT scale)}$$
SM : $\Delta m_{h}^{2} \sim -\frac{3|\lambda|^{2}}{8\pi^{2}}\Lambda^{2} + \text{finite} \qquad \text{unnatural}$

$$h - -- \int_{h}^{t} O(10^{30}) - O(10^{30}) \rightarrow 10^{4}$$

35/134

Kitano, Nomura [hep-ph/0602096]

MSSM condition for EWSB:

$$\frac{m_Z^2}{2} = -\mu^2 + \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} \qquad \text{Higgsino mass}$$

36/134

$$MSSM : \Delta m_h^2 \sim -\frac{3y_t^2}{4\pi^2} m_{\tilde{t}}^2 \log \frac{\Lambda}{m_{\tilde{t}}} \quad \text{``natural'' if } m_{\tilde{t}} \sim m_h$$

Kitano, Nomura [hep-ph/0602096]
"Natural SUSY"

$$\begin{aligned} \left(\alpha := A_t/m_{\tilde{t}}\right) \\ \left|\mu\right| &\lesssim 200 \text{ GeV} \left(\frac{\Delta^{-1}}{20\%}\right)^{-1/2} \\ \sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2} &\lesssim 600 \text{ GeV} \frac{\sin\beta}{\sqrt{1+\alpha^2}} \left(\frac{\log(\Lambda/\text{TeV})}{3}\right)^{-1/2} \left(\frac{\Delta^{-1}}{20\%}\right)^{-1/2} \\ m_{\tilde{g}} &\lesssim 900 \text{ GeV} \cdot \sin\beta \left(\frac{\log(\Lambda/\text{TeV})}{3}\right)^{-1/2} \left(\frac{\Delta^{-1}}{20\%}\right)^{-1/2} \\ \end{aligned}$$
Papucci, Ruderman, Weiler [1110.6926]

interesting channel: "stop search" $\tilde{t}\tilde{t}^* \longrightarrow t\bar{t} + mET$ (and squark/gluon search

 $(\tilde{q}\tilde{q}^*, \tilde{g}\tilde{q}, \tilde{g}\tilde{g}) \longrightarrow \text{jets} + \text{mET})$

Naturalness \rightarrow stop search

Cf. gluon searches

- Stop left-right mixing α is Large ($A_t ~ \sqrt{6}m_{\tilde{t}}$) and/or
- > (at least one) heavy stop

A comment on Naturalness: Higgs mass = 125 GeV

- Stop left-right mixing α is Large (A_t ~ √6m_{t̃}) and/or
- (at least one) heavy stop

disfavors "natural"

A canonical illustration:

Hall, Pinner, Ruderman [1112.2703]

43/134

 $(m_{\widetilde{Q}_3} = m_{\widetilde{u}_3^c} \text{ and } \tan \beta = 20; \text{ bands show } 124\text{--}126 \,\text{GeV})$

Outline

3) more exotic

Muon *g*-2 SM expectation : discrepancy!

QED: Aoyama, Hayakawa, Kinoshita, Nio [1205.5370].

EW: Gnendiger, Stöckinger, Stöckinger-Kim [1306.5546].

HVP: Hagiwara, Liao, Martin, Nomura, Teubner [1105.3149].

HLbL: Prades, De Rafael, Vainshtein [0901.0306].

See also:

HVP-LO: Davier, Hoecker, Malaescu, Zhang [1010.4180],

HVP-HO: Kurz, Liu, Marquard, Steinhauser [1403.6400],

HLbL: Jegerlehner, Nyffeler [0902.3360], Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [**1403.7512**] **46** /134

 $a_{\mu}(\text{QED}) = (11658471.8951 \pm 0.0080) \times 10^{-10},$ $a_{\mu}(\text{EW}) = (15.36 \pm 0.1) \times 10^{-10},$

QED: Aoyama, Hayakawa, Kinoshita, Nio [1205.5370].

EW: Gnendiger, Stöckinger, Stöckinger-Kim [1306.5546].

HVP: Hagiwara, Liao, Martin, Nomura, Teubner [1105.3149].

HLbL: Prades, De Rafael, Vainshtein [0901.0306].

See also:

HVP-LO: Davier, Hoecker, Malaescu, Zhang [1010.4180],

HVP-HO: Kurz, Liu, Marquard, Steinhauser [1403.6400],

HLbL: Jegerlehner, Nyffeler [0902.3360], Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [1403.7512]

 $a_{\mu}(\text{QED}) = (11658471.8951 \pm 0.0080) \times 10^{-10},$ $a_{\mu}(\text{EW}) = (15.36 \pm 0.1) \times 10^{-10},$

QED: Aoyama, Hayakawa, Kinoshita, Nio [1205.5370].

EW: Gnendiger, Stöckinger, Stöckinger-Kim [1306.5546].

HVP: Hagiwara, Liao, Martin, Nomura, Teubner [1105.3149].

HLbL: Prades, De Rafael, Vainshtein [0901.0306].

See also:

HVP-LO: Davier, Hoecker, Malaescu, Zhang [1010.4180],

HVP-HO: Kurz, Liu, Marquard, Steinhauser [1403.6400],

HLbL: Jegerlehner, Nyffeler [0902.3360], Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [1403.7512] **48** /134

QED: Aoyama, Hayakawa, Kinoshita, Nio [1205.5370].

EW: Gnendiger, Stöckinger, Stöckinger-Kim [1306.5546].

HVP: Hagiwara, Liao, Martin, Nomura, Teubner [1105.3149].

HLbL: Prades, De Rafael, Vainshtein [0901.0306].

See also:

HVP-LO: Davier, Hoecker, Malaescu, Zhang [1010.4180],

HVP-HO: Kurz, Liu, Marquard, Steinhauser [1403.6400],

HLbL: Jegerlehner, Nyffeler [0902.3360], Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [1403.7512]

$a_{\mu}^{\text{SM}} = (11659182.8 \pm 5.0) \times 10^{-10}$

- QED: Aoyama, Hayakawa, Kinoshita, Nio [1205.5370].
- EW: Gnendiger, Stöckinger, Stöckinger-Kim [1306.5546].
- HVP: Hagiwara, Liao, Martin, Nomura, Teubner [1105.3149].
- HLbL: Prades, De Rafael, Vainshtein [0901.0306].

See also:

- HVP-LO: Davier, Hoecker, Malaescu, Zhang [1010.4180],
- HVP-HO: Kurz, Liu, Marquard, Steinhauser [1403.6400],

HLbL: Jegerlehner, Nyffeler [0902.3360], Colangelo, Hoferichter, Nyffeler, Passera, Stoffer [**1403.7512**]

HLbL: Prades, De Rafael, Vainshtein [0901.0306].

Muon g-2 anomaly can be solved by SUSY

$$a_{\mu}^{\text{SUSY}}\left(\widetilde{\chi}^{0},\widetilde{\mu}\right) \approx \frac{g_{Y}^{2}}{(4\pi)^{2}} \frac{m_{\mu}^{2}}{m_{\text{soft}}^{2}} \operatorname{sgn}(\mu) \tan\beta + \cdots,$$

SUSY (~+ ~) ~ $g_{2}^{2} - \frac{m_{\mu}^{2}}{m_{\mu}^{2}} \operatorname{sgn}(\mu) \tan\beta$

$$a_{\mu}^{\mathrm{SUSY}}\left(\widetilde{\chi}^{\pm},\widetilde{\nu}_{\mu}\right) \approx \frac{g_2^2}{(4\pi)^2} \frac{m_{\mu}^2}{m_{\mathrm{soft}}^2} \operatorname{sgn}(\mu) \tan\beta.$$

 $\implies m(\widetilde{\mu}, \widetilde{\nu}_{\mu}, \widetilde{\chi}^{0}, \widetilde{\chi}^{\pm}) \lesssim 1 \,\text{TeV}$!?

Lopez, Nanopoulos, Wang [ph/9308336] Chattopadhyay, Nath [ph/9507386] Moroi [ph/9512396]

/1.34

.5

 $W \ni \mu H_{\rm u} H_{\rm d}$ (higgsino mass term), $\tan \beta = \langle H_{\rm u} \rangle / \langle H_{\rm d} \rangle$, $m_{\rm soft}$: SUSY-particle mass-scale, g_i : gauge couplings.

Five types of signatures from Neutralino-Chargino production

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{+} \rightarrow ZW/hW + mET$ ($\rightarrow 3\ell + mET$) but Z-like leptons

 $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{+} \rightarrow 3\ell + \text{mET}$ *Z*-unlike

Five types of signatures from Neutralino-Chargino production

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

 $x_\ell \sim 0.5$

 $x_{\ell} \sim 1$

 $x_\ell \sim 0$

Five types of signatures from Neutralino-Chargino production

 $pp \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^+$ ($\widetilde{W}^0 \widetilde{W}^+$ or $\widetilde{H}^0 \widetilde{H}^+$); then?

Muon g-2 vs LHC (1) 3-lepton signature

Muon g-2 vs LHC (1) 3-lepton signature

Muon g-2 vs LHC (1) 3-lepton signature : LHC Run 2

Muon g-2 vs LHC (1) 3-lepton signature : LHC Run 2

Muon g-2 vs LHC (1) 3-lepton signature : LHC Run 2

Muon g-2 vs LHC (1) 3-lepton signature : CMS degenerate at Run 1

Cross section [pb]

Outline

2) LLCP
 3) more exotic

Outline

65/134

3) more exotic

SUSY contribution to muon g-2 : gauge basis

"mass insertion"

SUSY contribution to muon g-2 : gauge basis

 $\frac{g_2^2 m_{\mu}^2}{8\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\nu}_{\mu}}^4} \cdot F_a\left(\frac{M_2}{m_{\widetilde{\nu}_{\mu}}}, \frac{\mu}{m_{\widetilde{\nu}_{\mu}}}\right)$ $\frac{g_2^2 m_{\mu}^2}{16\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\mu}_{\rm L}}^4} \cdot F_b\left(\frac{M_2}{m_{\widetilde{\mu}_{\rm L}}}, \frac{\mu}{m_{\widetilde{\mu}_{\rm L}}}\right)$ $g_Y^2 m_\mu^2 \mu \tan eta$ $\left(rac{m_{\widetilde{\mu}_{\mathrm{L}}}}{M_{1}}, rac{m_{\widetilde{\mu}_{\mathrm{R}}}}{M_{1}}
ight)$ F_b $8\pi^2$ $\frac{g_Y^2 m_{\mu}^2}{8\pi^2} \frac{M_1 \mu \tan \beta}{m_{\widetilde{\mu}_{\mathrm{R}}}^4} \cdot F_b\left(\frac{M_1}{m_{\widetilde{\mu}_{\mathrm{R}}}}, \frac{\mu}{m_{\widetilde{\mu}_{\mathrm{R}}}}\right)$ $\frac{g_Y^2 m_{\mu}^2}{16\pi^2} \frac{M_1 \mu \tan \beta}{m_{\widetilde{\mu}_{\rm L}}^4} \cdot F_b\left(\frac{M_1}{m_{\widetilde{\mu}_{\rm L}}}, \frac{\mu}{m_{\widetilde{\mu}_{\rm L}}}\right)$

 $\begin{cases} F_a, F_b \text{ are loop functions } (F > 0): \\ F_a(x,y) = \frac{1}{2} \frac{C_1(x^2) - C_1(y^2)}{x^2 - y^2}, & F_b(x,y) = -\frac{1}{2} \frac{N_2(x^2) - N_2(y^2)}{x^2 - y^2}; \\ C_1(x) = \frac{3 - 4x + x^2 + 2\log x}{(1 - x)^3}, & N_2(x) = \frac{1 - x^2 + 2x\log x}{(1 - x)^3}. \end{cases}$

Muon g-2 vs LHC (1) 3-lepton signature coming from Wino-Higgsino contribution

$$\frac{g_2^2 m_{\mu}^2}{8\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\nu}_{\mu}}^4} \cdot F_a\left(\frac{M_2}{m_{\widetilde{\nu}_{\mu}}}, \frac{\mu}{m_{\widetilde{\nu}_{\mu}}}\right)$$
$$-\frac{g_2^2 m_{\mu}^2}{16\pi^2} \frac{M_2 \mu \tan\beta}{m_{\widetilde{\mu}_{\rm L}}^4} \cdot F_b\left(\frac{M_2}{m_{\widetilde{\mu}_{\rm L}}}, \frac{\mu}{m_{\widetilde{\mu}_{\rm L}}}\right)$$

Wino contributions [red+blue; tree; slep=sneu]

Endo, Hamaguchi, Kitahara, Yoshinaga [1309.3065]

 μ tan β has upper bounds: $V_{\text{Higgs}} \supset -(m_{\tau} \mu \tan \beta \cdot \widetilde{\tau}_{\text{L}}^* \widetilde{\tau}_{\text{R}} h)$ $+ m_{\mu} \mu \tan \beta \cdot \widetilde{\mu}_{\mathrm{L}}^* \widetilde{\mu}_{\mathrm{R}} h$

 $=1 \Rightarrow m_{\widetilde{\mu}} \lesssim 300(420) \,\mathrm{GeV}$ $= 2 \Rightarrow \leq 440(620) \, \text{GeV}$ $=\infty \Rightarrow \qquad \lesssim 1.4(1.9) \,\mathrm{TeV}$

Endo, Hamaguchi, Kitahara, Yoshinaga [1309.3065]

$$\frac{g_Y^2 m_\mu^2}{8\pi^2} \frac{\mu \tan\beta}{M_1^3} \cdot F_b \left(\frac{m_{\widetilde{\mu}_{\rm L}}}{M_1}, \frac{m_{\widetilde{\mu}_{\rm R}}}{M_1}\right)$$

from $M_{\widetilde{\mu}}^2 = \begin{pmatrix} m(l_{\rm L})^2 & m_\mu(A_\mu^* - \mu \tan\beta) \\ m_\mu(A_\mu^* - \mu \tan\beta) & m(l_{\rm R})^2 \end{pmatrix}$

μ tan β has upper bounds:

$$V_{\text{Higgs}} \supset -\left(m_{\tau} \,\mu \tan\beta \cdot \widetilde{\tau}_{\text{L}}^{*} \widetilde{\tau}_{\text{R}} h\right) \\ + m_{\mu} \,\mu \tan\beta \cdot \widetilde{\mu}_{\text{L}}^{*} \widetilde{\mu}_{\text{R}} h\right)$$

$$m_{\tilde{\tau}}/m_{\tilde{\mu}}$$

$$= 1 \implies m_{\tilde{\mu}} \lesssim 300(420) \,\text{GeV}$$

$$= 2 \implies \qquad \lesssim 440(620) \,\text{GeV}$$

$$= \infty \implies \qquad \leq 1.4(1.9) \,\text{TeV}$$

Outline

3) more exotic

Outline

Ready for single-quark observation!

LLCP

- 1. Motivations
- 2. How to detect?
- 3. Current and future

LLCP signature ← charged (quasi-) stable particles

→ cosmological motivations

 DM relic abundance (esp. to ameliorate DM over-abundance)

co-annihilationsuper-WIMP scenario

 \rightarrow next slides

Li problem

> MSSM $\tilde{\tau}$ with $m_{\tilde{\tau}} \sim 400 \,\text{GeV}$ $\Delta(m_{\tilde{\tau}} - m_{\text{LSP-DM}}) \sim 100 \,\text{MeV}$

Sato, Shimomura, Yamanaka [1604.04769]

Early Universe with $T > m_{DM}$

Early Universe with $T \leq m_{DM}/20$

DM as a thermal relic : overabundance

"observed" relic density Ωh^2

 $\langle \Box$ "proper" crosssection $\langle \sigma v \rangle$ of (DM)(DM) \rightarrow SM

81 /134

• "observed" relic density Ωh^2

 $\langle \Box$ "proper" crosssection $\langle \sigma v \rangle$ of (DM)(DM) \rightarrow SM

■ Sometimes overabundant : $\Omega h^2 > 0.12$ DM > e.g. MSSM with \widetilde{B} -DM $m_{\widetilde{B}} \gtrsim 100$ GeV → overabundant

CO-annihilation Binetruy, Girardi, Salati (1984), Griest, Seckel (1991)

Super-WIMP Feng, Rajaraman, Takayama [ph/0306024]

➢ MSSM4G Abdullah, Feng [1510.06089]

and a lot more...

SM

■ Co-annihilation

Co-annihilation

- ➢ Bino-stau → $m_{\tilde{B}} \lesssim$ 700 GeV
- ➢ Bino-Wino → 3 TeV
- ➢ Bino-gluino → 7-8 TeV
- ➢ Bino-stop → ~8 TeV

small mass splitting

- $\frac{m_{\widetilde{f}}-m_{\widetilde{B}}}{m_{\widetilde{B}}}\ll 1$
 - \rightarrow LLCP

84/134

cf. [1403.0715], [1404.5571], etc.

$$\tau(\tilde{l} \to l\tilde{G}) = \frac{5.7 \times 10^{-7} \operatorname{sec}}{\equiv 170 \operatorname{m}} \left(\frac{m_{\tilde{l}}}{1 \operatorname{TeV}}\right)^{-5} \left(\frac{m_{\tilde{G}}}{1 \operatorname{MeV}}\right)^{2}$$
$$\equiv 170 \operatorname{m}$$

LLCP ($\widetilde{\boldsymbol{\tau}}$ as a working example)

1. Motivations

- 2. How to detect?
- 3. Current and future

/134

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $p \& \beta$ measurements

 $(\beta = \nu/c)$

92/134

velocity

- TOF [time-of-flight] $\beta = \Delta L/\Delta t$
- dE/dx [ionization energy loss]

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements

velocity

- TOF [time-of-flight] $\beta = \Delta L / \Delta t$
- dE/dx [ionization energy loss]

 $(\beta = \nu/c)$

. 5

LLCP ($\widetilde{\boldsymbol{\tau}}$ as a working example)

1. Motivations

2. How to detect?

3. Current and future

Latest limits

Detector

similar to ATLAS/CMS

- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 14 TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- *p*_T > **100** GeV
- |η| < 2.4
- $0.3 < \hat{\beta} < 0.95$

Event selection
 two *l*-candidates

14 TeV LHC expectation

97/134

LLCP ($\widetilde{\boldsymbol{\tau}}$ as a working example)

1. Motivations

2. How to detect?

3. Current and future and more

/134

Muon energy loss in matter

102/134

[also in PDG Review "Passage of particles through matter"]

Assumptions

Detector

similar to ATLAS/CMS

- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- $p_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

LLCP selection flow $(\int L = 1 ab^{-1})$						
	sigr	nal	SMRKC			
	$\tilde{l} = 1 \text{ TeV } 3 \text{ TeV}$					
total	2570	31.8	_			
p _T & η	1840	28.5	9.19×10^{6}			
β	1230	24.6	3.41×10^{5}			
Eloss	1230	24.6	2.78×10^{5}			
$\epsilon_{acc}\epsilon_{eff}$	48%	77%	_			
Event categorization $(\int L = 1 ab^{-1})$						

l) ١J 1 TeV BKG 3 TeV $N_{LLCP} = 0$ 483 (a lot) 1.34 2.78×10^{5} 378 4.46 $N_{\rm LLCP} = 1$ SR 424 10.134.6 $N_{\rm LLCP} = 2$

 $\blacksquare \widetilde{l} \text{ -selection flow}$

reconstructed "muon" w.

- *p*_T > 500 GeV
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

LLCP sele	ection f	flow ($\int L = 1 \mathrm{ab}^2$	⁻¹)			
\sim signal		SM BKG		Eloss reduces 34% of BKG			
	$l = 1 \mathrm{Te}$	eV 3 TeV	/		$(:: 0.82^2 = 0.66)$		
total	2570	31.8	—				
p _T & η	1840	28.5	9.19×10) ⁶			
β	1230	24.6	3.41×10)5	 η < 2.4 		
Eloss	1230	24.6	2.78×10^{-10})5	87 0 4 < $\hat{\beta}$ < 0.95		
$\epsilon_{acc}\epsilon_{eff}$	48%	77%	—				
Event categorization $(\int L = 1 \alpha b^{-1})$ • $E_{loss} < 30 \text{ GeV}$							
	1 TeV	3 TeV	BKG				
$N_{\rm LLCP} = 0$	483	1.34	(a lot)		Event selection		
$N_{\rm LLCP} = 1$	378	4.46	2.78×10^{5}				
$N_{\rm LLCP} = 2$	2 424	10.1	34.6) SR	 two <i>l</i>-candidates 		

Result: Expected exclusion limit

Outline

co-annihilation in coming years!

(R-hadron, displaced vertex, disappearing track, ...)

3) more exotic (ph/0511034, 1403.0715, 1409.4533,1504.00504, 1506.08206, ...)

"Exotic" searches by ATLAS + CMS

Preliminary Results - 2016 Run

Analysis

CDS Entry Lumin

Conference Notes with 2015/2016 data

Title	Conference Note and Plots	Int. Iuminosity	Date
Search for new phenomena in tt final states with additional heavy-flavour jets in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector	ATLAS- CONF-2016-104 P	13.3/fb	Sep 2016
Search for pair production of heavy vector-like quarks decaying to high-p; W bosons and b quarks in the lepton-plus-jets final state in pp collisions at v/s=13 TeV with the ATLAS detector 🗱	ATLAS- CONF-2016-102g	13.3/fb	Sep 2016

■ List of 13 TeV EXO results (ATLAS-EXO, CMS-EXO, CMS-B2G)

"others" ?

- black holes
- doubly-charged Higgs
- strong gravity
- TeV-scale gravity signatures
- excited leptons / quarks
- four-top-quark production
- composite Majorana neutrinos
- quark contact interactions & extra dim
- type-III seesaw fermion
- pair-produced Higgs
- pair-produced resonances in four jets
- pair-produced first- / second-generation scalar LQ
- right-handed W and third-generation scalar LQ
- right-handed nu and third-generation scalar LQ
- vector-like quarks (pair-production) (single-production)

"Exotic" searches by ATLAS + CMS

"others" ?

> vector-like quarks (pair-production) (single-production)

SM + vector-like fermions: SM + FFF one Dirac fermion "vector-like fermion" $\mathcal{L} \sim \mathcal{L}_{SM} + M_FFFF + (Yukawas)$

MSSM + vector-like fermions

MSSM +
$$F + \overline{F}$$
 + $\widetilde{F} + \overline{\widetilde{F}}$
 $W = W_{MSSM} + M_F F \overline{F} + (Yukawas)$

✓ no gauge anomaly

✓ consistent w. EWPT & Higgs data (unlike chiral 4th gen)

■ MSSM + VLF

- ➤ 2 models for coupling unification
 - QUE model : MSSM + QQUUEĒ
 - 🧭 gauge coupling unification
 - 🎸 SU(5) GUT

> extra $H_u Q_4 \overline{U}_4$ interaction $\rightarrow m_h$

- QDEE model : MSSM + QQDDEEEE
 - 🕜 gauge coupling unification
 - 😢 SU(5) GUT

> extra $H_d Q_4 \overline{D}_4$ coupling $\rightarrow m_h$ slightly

(you can also append $\mathbf{5} + \overline{\mathbf{5}} = (\mathbf{L}, \mathbf{\overline{D}}) + (\mathbf{\overline{L}}, \mathbf{D})$ pairs)

Gauge coupling unification

Gauge coupling unification

■ MSSM + VLF

- 2 models for coupling unification
 - **QUE model** : MSSM + $Q\bar{Q}U\bar{U}E\bar{E}$
 - 🕗 gauge coupling unification
 - 💋 SU(5) GUT

 \succ extra $H_u Q_4 \overline{U}_4$ interaction $\rightarrow m_h$

$$W = W_{\text{MSSM}} + Y' H_{\text{u}} Q_4 \bar{U}_4 + Y'' H_{\text{d}} \bar{Q}_4 U_4$$

$$\alpha^{-1} 30$$

$$U(1)$$

$$SU(2)$$

$$U(2)$$

$$U(1)$$

$$SU(2)$$

$$U(1)$$

$$= W_{\text{MSSM}} + Y' H_{\text{U}} Q_{4} \bar{U}_{4} + Y'' H_{\text{d}} \bar{Q}_{4} U_{4}$$
$$+ \frac{3v^{2} Y'^{4} \sin \beta^{4}}{4\pi^{2}} \left(\log \frac{m_{\tilde{t}}^{2}}{m_{t'}^{2}} - \frac{5}{6} + \frac{m_{t'}^{2}}{m_{\tilde{t}'}^{2}} + \alpha'^{2} + \cdots \right)$$

\rightarrow SUSY scale can be lowered.

(but still unnatural because μ is enhanced.)

Vector-like quark search

$W = W_{\text{MSSM}} + Y'H_{u}Q_{4}\bar{U}_{4} + Y''H_{d}\bar{Q}_{4}U_{4} + M_{Q'}Q_{4}\bar{Q}_{4} + M_{U'}U_{4}\bar{U}_{4} + \epsilon_{i}H_{u}Q_{4}\bar{U}_{i} + \epsilon_{i}'H_{u}Q_{i}\bar{U}_{4} + \cdots$ (QUE model)

(otherwise stable VLQ)

depending on mixing btw. vec-like/SM quarks. (usually 3rd gen is chosen to avoid flavor constraints)

Z /134

Vector-like quark search

$W = W_{\text{MSSM}} + Y' H_{u} Q_{4} \bar{U}_{4} + Y'' H_{d} \bar{Q}_{4} U_{4} + M_{Q'} Q_{4} \bar{Q}_{4} + M_{U'} U_{4} \bar{U}_{4}$ + $\epsilon_{i} H_{u} Q_{4} \bar{U}_{i} + \epsilon_{i}' H_{u} Q_{i} \bar{U}_{4} + \cdots$ (QUE model)

(otherwise stable VLQ)

Vector-like quark search (Run 1 summary + Run 2 ATL-CONF-2016-101)

Outline

MSSM + VLF

- ➤ 2 models for coupling unification
 - QUE model : MSSM + QQUUEE
 - 🖉 gauge coupling unification
 - 🎸 SU(5) GUT

> extra $H_u Q_4 \bar{U}_4$ interaction $\rightarrow m_h$

126/134

- QDEE model : MSSM + QQDLEEEE
 - 🕜 gauge coupling unification
 - 😢 SU(5) GUT

> extra $H_d Q_4 \overline{D}_4$ coupling $\rightarrow m_h$ slightly

(you can also append $\mathbf{5} + \overline{\mathbf{5}} = (\mathbf{L}, \mathbf{D}) + (\mathbf{L}, \mathbf{D})$ pairs)

• pure-Bino DM with $m_{\tilde{B}} \gtrsim 100 \text{ GeV} \rightarrow \Omega h^2$ overabundant

Increase $\langle \sigma v \rangle$!!

• pure-Bino DM with $m_{\tilde{B}} \gtrsim 100 \text{ GeV} \rightarrow \Omega h^2$ overabundant

$W = W_{\text{MSSM}} + M_{E'}E_4\bar{E}_4 + \epsilon_i H_d L_i \bar{E}_4$

(QUE model)

/1.34

(otherwise stable VLL)

depending on mixing btw. vec-like/SM leptons. BR fixed but $e:\mu:\tau$ ratio not fixed

(flavor constraints are not strict)

$$\begin{array}{c|c} & & & & & & & \\ \hline \end{array} & & & & & \\ & & & & \\ &$$

VLL search prospects at 14 TeV LHC

■ IF $e: \mu: \tau = 1:0:0$ or 0:1:0 $\left(\tau' \xrightarrow{100\%} e + V \text{ or } \tau' \xrightarrow{100\%} \mu + V\right)$

$$\blacksquare \text{ IF } e: \mu: \tau = 0:0:1 \quad \left(\tau' \xrightarrow{100\%} \tau + V\right)$$

✤ No constraints from LHC or HL-LHC.

This scenario will be perfectly searched by CTA gamma-ray observation.

 $e: \mu: \tau = 1:0:0$ or 0:1:0

• $e: \mu: \tau = 0: 0: 1$

LHC insensitive, but CTA covers full region

VLL as a solution of overabundance : MSSM4G

 $e: \mu: \tau = 1:0:0$ or 0:1:0

• $e: \mu: \tau = 0: 0: 1$

LHC insensitive, but CTA covers full region

Outline

