

MSSM 4G ରି scenario

Sho IWAMOTO (岩本 祥)

20 Sep. 2016 Seminar @ The University of Tokyo

Based on [1608.00283] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) Universe =

Universe =

Universe =

Hints of "New Physics"

- Dark matter
- Dark energy
- Neutrino mass
- Gauge coupling unification
- Higgs mass ("naturalness")
- Muon "*g* 2"

etc...

Hints of "New Physics"

- Dark matter
- Dark energy
- Neutrino mass
- Gauge coupling unification
- Higgs mass ("naturalness")
- Muon "*g* 2"

■ SUSY [supersymmetry]

etc...

Hints of "New Physics"

- Dark matter
- Dark energy
- Neutrino mass
- Gauge coupling unification
- Higgs mass ("naturalness")
- Muon "*g* 2"

■ SUSY [supersymmetry]

Please fill this list with your models / models you like

etc...

Hints of "New Physics"

- Dark matter
- Dark energy
- Neutrino mass
- Gauge coupling unification
- Higgs mass ("naturalness")
- Muon "*g* 2"

- SUSY [supersymmetry]
- Gauge-Higgs unification
- Hidden strong SU(N)

etc...

Hints of "New Physics"

- Dark matter
- Dark energy
- Neutrino mass
- Gauge coupling unification
- Higgs mass ("naturalness")
- Muon "*g* 2"

[Standard Model] SM =mass → ≈2.3 MeV/c² ≈1.275 GeV/c2 ≈173.07 GeV/c2 0 ≈126 GeV/c2 charge → 2/3 2/3 2/3 0 1/2 1/2 spin $\rightarrow 1/2$ Higgs boson charm gluon top up =4.8 MeV/c2 ≈95 MeV/c² ≈4.18 GeV/c² 0 QUARKS -1/3 -1/3 -1/3 0 1/2 1/2 1/2 down strange bottom photon 1.777 GeV/c2 0.511 MeV/c2 105.7 MeV/c2 91.2 GeV/c2 -1 -1 -1 0 е 1/2 1/2 1/2 BOSONS Z boson electron tau muon <2.2 eV/c2 <0.17 MeV/c2 <15.5 MeV/c2 80.4 GeV/c² EPTONS 0 0 0 BOU ±1 1/2 1/2 1/2 electron tau neutrino muon W boson ∢ neutrino neutrino ()

Image by <u>MissBJ</u> [<u>CC BY 3.0</u>], via <u>Wikimedia Commons</u> (changes were made by S.I)

77

MSSM =

[Minimal Supersymmetric Standard Model]

Image by MissBJ [CC BY 3.0], via Wikimedia Commons (changes were made by S.I) **12**/77

■ SM \ni 3 forces : U(1), SU(2), SU(3) [Why three?]

Figure from S. P. Martin, A Supersymmetry Primer, hep-ph/9709356

■ SM \ni 3 forces : U(1), SU(2), SU(3) [Why three?]

Figure from S. P. Martin, A Supersymmetry Primer, hep-ph/9709356

Dark matter candidate in MSSM

- > density $\Omega h^2 = 0.12$
- > not detected by astrophysics / direct search / LHC

- > density $\Omega h^2 = 0.12$
- > not detected by astrophysics / direct search / LHC

> not detected by astrophysics / direct search / LHC

Neutralino relic density

 $\widetilde{W} = \widetilde{B} \oplus \widetilde{W}^0 \oplus \widetilde{H}^0_d \oplus \widetilde{H}^0_{u}$

• *B*-like?

• W-like?

\rightarrow "overabundant" problem Ω $h^2 \gg 0.12$

• *H*-like?

Neutralino relic density

Introduction: why overabundant? Model: MSSM4G solves overabundance.

Analysis:

- cosmic rays (CTA, Fermi, MAGIC)
- colliders (LHC)
- direct detection (LUX)

Summary with discussion seeds

• Early Universe with $T > m_{\tilde{B}}$

• Early Universe with $T \leq m_{\tilde{B}}$

Early Universe with $T \leq m_{\tilde{B}}/20$

"observed" relic density Ωh^2 $\langle \Box$ "proper" crosssection $\langle \sigma v \rangle$ of (DM)(DM) \rightarrow SM 10^{-3} increasing $< \sigma v >$ \geq n^{-10} 10^{-12} Yeq 10^{-13} 10^{-14} 10^{3} 10^{1} 10^{2} time—> m Figure from Gelmini and Gondolo, 1009.3690 26/77 "observed" relic density Ωh^2 $\langle \Box$ "proper" crosssection $\langle \sigma v \rangle$ of (DM)(DM) \rightarrow SM pure \tilde{B} -DM (i.e., LSP \tilde{W} is \tilde{B} -like) \succ $\langle \sigma v \rangle$ strongly depends on $m_{\tilde{f}}$ $\mapsto m_{\tilde{f}} \sim 100 \, \text{GeV}$ $m_{\tilde{f}} \gg 100 \text{ GeV} \Longrightarrow \langle \sigma v \rangle$ too small \implies "overabundant" problem

Bino relic density

Figure from Edsjö, Schelke, Ullio, Gondolo, hep-ph/0301106

28/77

Co-annihilation

• An old solution to increase $\langle \sigma v \rangle$: "co-annihilation"

Co-annihilation

Figure from Edsjö, Schelke, Ullio, Gondolo, hep-ph/0301106

Co-annihilation

31/77

Introduction: why overabundant? Model: MSSM4G solves overabundance.

Analysis:

- cosmic rays (CTA, Fermi, MAGIC)
- colliders (LHC)
- direct detection (LUX)

Summary with discussion seeds

77

MSSM4G outline

• A new solution to increase $\langle \sigma v \rangle$: MSSM4G

extra annihilation channel

 \rightarrow larger Ωh^2

$$\rightarrow$$
 "proper" $\langle \sigma v \rangle$

if
$$\overline{\mathbb{G}} \gtrsim \widetilde{B} > \overline{\mathbb{T}_4}$$

54

$$\left\langle \sigma v \right\rangle = \frac{g_Y^4 Y_{\rm L}^2 Y_{\rm R}^2}{2\pi} \frac{m_f^2}{m_{\widetilde{B}}} \frac{\sqrt{m_{\widetilde{B}}^2 - m_f^2}}{\left(m_{\widetilde{B}}^2 + m_{\widetilde{f}}^2 - m_f^2\right)^2}$$

MSSM4G outline

 $(Q_i, \bar{U}_i, \bar{D}_i, L_i, E_i) + (H_{_{II}}, H_{_{d}})$ [mssm] $(i=1\ldots 3)$ $+(E_4, E_4)$ [MSSM4G]

		$\mathrm{SU}(3)_{\mathrm{color}}$	$\mathrm{SU}(2)_{\mathrm{weak}}$	$\mathrm{U}(1)_Y$
$\widetilde{\mathbf{R}}_{\mathbf{A}}$ T	Q_i	3	2	1/6
	$ar{U}_i$	$\overline{3}$	1	-2/3
GYY TA	\bar{E}_i	1	1	1
	\bar{D}_i	$\overline{3}$	1	1/3
	L_i	1	2	-1/2
	H_{u}	1	2	1/2
\tilde{B} τ_4	$H_{\rm d}$	1	2	-1/2
	\bar{E}_4	1	1	1
\rightarrow $land a \sqrt{4}$	E_4	1	1	-1
$\Rightarrow (0 v) \propto t$				

35

$$\begin{split} W &= Y_{\rm u} H_{\rm u} Q \bar{U} + Y_{\rm d} H_{\rm d} Q \bar{D} + Y_{\rm e} H_{\rm d} L \bar{E} \\ &+ M_{E_4} E_4 \bar{E}_4 + \epsilon_i H_{\rm d} L_i \bar{E}_4 \\ \text{[vector-like mass]} \quad \text{[mixing with SM leptons]} \end{split}$$

MSSM4G : Two models

- MSSM + $E\bar{E} \rightarrow$ breaks coupling unification
- QUE model : MSSM + $Q\bar{Q}U\bar{U}E\bar{E}$
 - 🕗 gauge coupling unification
 - 🎸 SU(5) GUT
 - > extra $H_u Q_4 \overline{U}_4$ interaction $\rightarrow m_h \checkmark$
- QDEE model : MSSM + QQDDEEEE
 - gauge coupling unification
 - 🔀 SU(5) GUT
 - > extra $H_dQ_4\bar{D}_4$ coupling $\rightarrow m_h$ slightly \checkmark

MSSM4G : Two models

■ MSSM + $E\bar{E} \rightarrow$ breaks coupling unification

- QUE model : MSSM + QQUUEĒ $\implies MSSM + T_4, B_4, t_4, \tau_4,$ $\widetilde{T}_{4L}, \widetilde{T}_{4R}, \widetilde{B}_{4L}, \widetilde{B}_{4R}, \widetilde{t}_{4L}, \widetilde{t}_{4R}, \widetilde{\tau}_{4L}, \widetilde{\tau}_{4R},$
- QDEE model : MSSM + *QQDDEĒEĒ*
- $\Longrightarrow \mathsf{MSSM} + T_4, B_4, b_4, \tau_4, \tau_5,$ $\widetilde{T}_{4L}, \widetilde{T}_{4R}, \widetilde{B}_{4L}, \widetilde{B}_{4R}, \widetilde{b}_{4L}, \widetilde{b}_{4R}, \widetilde{\tau}_{4L}, \widetilde{\tau}_{4R}, \widetilde{\tau}_{5L}, \widetilde{\tau}_{5R}$

MSSM4G : Working assumption (the minimal setup)

■ MSSM + $E\bar{E} \rightarrow$ breaks coupling

QUE model : MSSM + Q\bar{Q}U\bar{U}E\bar{E}

- $M_1 \ll \mu \ll M_2$ \rightarrow LSP $\tilde{\chi}_1^0$ is \tilde{B} -like
- All the other SUSY particles & extra Higgses are decoupled.

$$\widetilde{T}_{4L},\widetilde{T}_{4R},\widetilde{B}_{4L},\widetilde{B}_{4R},\widetilde{t}_{4L},\widetilde{t}_{4R},\widetilde{ au}_{4L},\widetilde{ au}_{4R}$$

assumed to be "decoupled" (very heavy) and we will ignore them.

- **QDEE model : MSSM + Q\bar{Q}D\bar{D}E\bar{E}E\bar{E}**
- \square MSSM + $T_4, B_4, b_4, \tau_4, \tau_5,$

 $\widetilde{T}_{4L}, \widetilde{T}_{4R}, \widetilde{B}_{4L}, \widetilde{B}_{4R}, \widetilde{b}_{4L}, \widetilde{b}_{4R}, \widetilde{\tau}_{4L}, \widetilde{\tau}_{4R}, \widetilde{\tau}_{5L}, \widetilde{\tau}_{5R}$

■ MSSM + $E\bar{E} \rightarrow$ breaks coupling

QUE model : MSSM + QQUUEE

SM +
$$\widetilde{\chi}_1^0 (\approx \widetilde{B})$$
, τ_4 ,

Other working assumptions

- $M_1 \ll \mu \ll M_2$ \rightarrow LSP $\tilde{\chi}_1^0$ is \tilde{B} -like
- All the other SUSY particles & extra Higgses are decoupled.

assumed to be equal-mass

- QDEE model : MSSM + QQDDEĒĒĒ
 - SM + $\tilde{\chi}_1^0 (\approx \tilde{B})$, τ_4, τ_5 , assumed to be equal-mass

 $\tilde{\tau}_{4L}, \tilde{\tau}_{4R}$

 $\widetilde{\tau}_{4I}$, $\widetilde{\tau}_{4R}$, $\widetilde{\tau}_{5I}$, $\widetilde{\tau}_{5R}$

assumed to be equal-mass

40/77

Introduction: why overabundant? Model: MSSM4G solves overabundance.

Analysis:

- cosmic rays (CTA, Fermi, MAGIC)
- colliders (LHC)
- direct detection (LUX)

Summary with discussion seeds

DM indirect detection (= searches for DM annihilation)

time

DM

DM indirect detection (= searches for DM annihilation)

$$\langle \sigma v \rangle = \frac{g_Y^4 Y_L^2 Y_R^2}{2\pi} \frac{m_f^2}{m_{\widetilde{B}}} \frac{\sqrt{m_{\widetilde{B}}^2 - m_f^2}}{\left(m_{\widetilde{B}}^2 + m_{\widetilde{f}}^2 - m_f^2\right)^2}$$
(in convention of $Q = T_3 + Y$)

44/77

• DM indirect detection (= searches for DM DM $\rightarrow \tau_4 \bar{\tau}_4$)

$$\begin{split} \widetilde{W} &\ni Y_{\mathrm{e}} H_{\mathrm{d}} L \bar{E} \\ &+ M_{E_4} E_4 \bar{E}_4 + \epsilon_i H_{\mathrm{d}} L_i \bar{E}_4 \\ & \text{[vector-like mass]} \quad [\text{mixing with SM leptons]} \end{split} \\ \left\langle \sigma v \right\rangle &= \frac{g_Y^4 Y_{\mathrm{L}}^2 Y_{\mathrm{R}}^2}{2\pi} \frac{m_f^2}{m_{\widetilde{B}}} \frac{\sqrt{m_{\widetilde{B}}^2 - m_f^2}}{\left(m_{\widetilde{B}}^2 + m_{\widetilde{f}}^2 - m_f^2\right)^2} \\ & \text{(in convention of } Q = T_3 + Y) \end{split}$$

Constraints from cosmic-ray observations				
DM indirect detect	on $ \begin{array}{c} W \ni Y_{e}H_{d}L\bar{E} \\ + M_{E_{4}}E_{4}\bar{E}_{4} + \epsilon_{i}H_{d}L_{i}\bar{E}_{4} \end{array} $ $ \begin{array}{c} DM \\ M\nu : Zl : hl \sim 2 : 1 : 1 \end{array} $			
	DM DM→			
$ au_{4(5)}$ mixes with $m{ extsf{e}}$	W^+W^- ZZ hh $\nu\bar{\nu}$ e^+e^-			
$ au_{4(5)}$ mixes with μ	W^+W^- ZZ hh $\nu\bar{\nu}$ $\mu^+\mu^-$			
$ au_{4(5)}$ mixes with $ au$	W^+W^- ZZ hh $\nu\bar{\nu}$ $\tau^+\tau^-$			

46/77

✓ τ-mixing fully covered ✓ e/µ-mixing with $m_{\tilde{B}}$ > 340–380 GeV covered

MAGIC: 158 hr of Segue 1

Fermi-LAT: 6 yr of 15 dSph (incl. Segue 1)

DM profile: NFW

Fermi-LAT dominates MAGIC in almost all E-range.

(with $m_{\tau_4} = 0.83 m_{\widetilde{B}}$)

CTA prospect : 500hr of Milky Way

DM profile: Einasto

No syst. unc. (stat only)

✓ τ-mixing fully covered ✓ e/µ-mixing with $m_{\tilde{B}}$ > 340–380 GeV covered

MAGIC: 158 hr of Segue 1

Fermi-LAT: 6 yr of 15 dSph (incl. Segue 1)

DM profile: NFW

Fermi-LAT dominates MAGIC in almost all E-range.

(with $m_{\tau_4} = 0.83 m_{\widetilde{B}}$)

CTA prospect : 500hr of Milky Way

DM profile: Einasto

No syst. unc. (stat only)

Summary

	e-mixing	µ-mixing	τ-mixing
CTA 500hr	covers $m_{\widetilde{B}}$ >	340-380 GeV	full coverage
HL-LHC			

Introduction: why overabundant? Model: MSSM4G solves overabundance.

Analysis:

- cosmic rays (CTA, Fermi, MAGIC)
- colliders (LHC)
- direct detection (LUX)

Summary with discussion seeds

■ MSSM + $E\bar{E} \rightarrow$ breaks coupling unification

QDEE model : MSSM + QQDDEEEE

 \implies SM + $\widetilde{\chi}_1^0 (\approx \widetilde{B})$, τ_4, τ_5 , assumed to be equal-mass

 $\widetilde{\tau}_{4I}, \widetilde{\tau}_{4R}, \widetilde{\tau}_{5I}, \widetilde{\tau}_{5R}$ assumed to be equal-mass

• MSSM + $E\bar{E} \rightarrow$ breaks coupling unification

• MSSM + $E\bar{E} \rightarrow$ breaks coupling unification

Collider prospects for extra slepton searches

$$pp \to \tilde{\tau}_{4(,5)} \tilde{\tau}_{4,(5)}^* \equiv pp \to \tilde{l}_R \tilde{l}_R^*$$

determined by mixing parameters

 e/μ -mixing \rightarrow slepton searches $\times 2(4)$ ($\tilde{e}_{R}, \tilde{\mu}_{R}$)

14 TeV prospects studied in <u>1408.2841</u> (Eckel, Ramsey-Musolf, Shepherd, Su)

 \rightarrow re-interpreted

Collider prospects for extra slepton searches

$$pp \rightarrow \tilde{\tau}_{4(,5)} \tilde{\tau}_{4,(5)}^* \equiv pp \rightarrow \tilde{l}_R \tilde{l}_R^*$$

determined by mixing parameters

 τ -mixing \rightarrow stau searches $\times 2(4)$

- \rightarrow No constraint expected.
 - > LHC Run 1 provided no limit on MSSM stau mass.
 - > 14TeV, 3/ab LHC will not exclude MSSM4G parameter region.

Summary

	e-mixing	µ-mixing	τ-mixing
CTA 500hr	covers <i>m_ẽ</i> > 340–380 GeV		full coverage
HL-LHC (slepton)	covers $m_{\widetilde{B}}$ < 400 (480) GeV (but not "degenerate" region)		
HL-LHC (lepton)			

<u>e/µ-mixing</u> $m_{ar{B}}~({
m GeV})$ 600_Γ 300 400 500 600 14 TeV LHC exclusion e/mu-mixed extra slepton QUE 10 QUE $W^+ W^-$ ----- QDEE 8 500 : : 6 Fermi-MAGIC $\langle \sigma v \rangle \times 10^{-26} (cm^3/s)$ 400 -5m_B[GeV] 4 2 200 CTA 100 150 200 250 300 100 E (GeV) $m_{\tilde{\ell}_4}$ [GeV] 200 400 800

<u>τ/µ-mixing, QUE</u>

Collider prospects for extra vectorlike lepton searches

60

Collider prospects for extra vectorlike lepton searches

Collider prospects for extra vectorlike lepton searches

<u>τ-mixing case</u>

- ✓ <u>1510.03456</u> (Kumar and Matrin)
 - SRs: 4(e, mu, had-tau)
 - Signal and BKG by their MC (FR-MG5-Pythia-Delphes)
 - > no prospects for exclusion if BKG syst. unc. > 10%

→ 13 TeV, 3/ab covers m_{τ_4} < 234 (264) GeV

OUE

ODEE

with "a very optimistic BKG estimation"

■ e/µ-mixing cases

63

τ-mixing case

> LHC insensitive ... ($(\cdot \cdot \omega \cdot)$)

e/µ-mixing cases

64

τ -mixing case

LHC insensitive, but CTA covers full region

Summary : MSSM4G scenario

mass splitting

Edsjö, Schelke, Ullio, Gondolo, hep-ph/0301106

Summary : Future prospects

	e-mixing	µ-mixing	τ-mixing
CTA 500hr	covers <i>m_ẽ</i> > 340–380 GeV		full coverage
HL-LHC (slepton)	covers <i>m_ẽ <</i> 400 (480) GeV (but not "degenerate" region)		
HL-LHC (lepton)	covers $m_{ au_4}$ < 350 (430) GeV equivalent to $m_{\widetilde{B}}$ < 380 (480) GeV		

Introduction: why overabundant? Model: MSSM4G solves overabundance.

Analysis:

- cosmic rays (CTA, Fermi, MAGIC)
- colliders (LHC)
- > direct detection (LUX)

Summary with discussion seeds

: "muon g-2 problem"

MSSM: extra contribution \rightarrow MSSM may explain this anomaly.

MSSM: extra contribution \rightarrow MSSM may explain this anomaly.

MSSM: extra contribution \rightarrow MSSM may explain this anomaly.

Why always negative?

Summary : Future prospects

	e-mixing	µ-mixing	τ-mixing
CTA 500hr	covers <i>m_ẽ</i> > 340–380 GeV		full coverage
HL-LHC (slepton)	covers <i>m_ẽ <</i> 400 (480) GeV (but not "degenerate" region)		
HL-LHC (lepton)	covers $m_{ au_4}$ < 350 (430) GeV equivalent to $m_{\widetilde{B}}$ < 380 (480) GeV		

