

Long-lived sleptons at a 100 TeV pp collider

(and at the 14 TeV LHC)

Sho IWAMOTO (岩本 祥)

13 Dec. 2015 IPS 61st annual meeting @ Bar Ilan University

Based on

J. L. Feng (UC Irvine), SI, Y. Shadmi, S. Tarem (Technion) [1505.02996]

Long-lived sleptons in Collider Experiments

- Sleptons : a particle predicted in SUSY [SUSY-partner of leptons]
- Mass $\gtrsim 100 \,\text{GeV}$ (LEP)
- Charge: EM-charged
- Lifetime: ?????

Expected reach " $m_{\tilde{l}}$ " at 100 TeV pp collider

New phenomenon at 100 TeV pp collider "Muon radiative energy loss"

- **1. Motivation** for long-lived \tilde{l}
- 2. searches at the LHC
- 3. at 100 TeV collider?

Muon radiative energy loss for BKG reduction

4. Results

>Expected reach: $m_{\tilde{i}}$

1. Motivation for long-lived \tilde{l}

2. searches at the LHC

3. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

4. Results

>Expected reach: *m*_ĩ

SuperWIMP scenario

$$\Omega_{
m DM} h^2 = 0.12$$
 ... how to realize?

A hypothesis: "superWIMP scenario" LSP = \widetilde{G} , NLSP = \widetilde{l} ... long-lived \widetilde{l}

$$\left(\tau(\tilde{l} \to l\tilde{G}) = \frac{5.7 \times 10^{-7} \operatorname{sec}}{\equiv 170 \operatorname{m}} \cdot \left(\frac{m_{\tilde{l}}}{1 \operatorname{TeV}}\right)^{-5} \left(\frac{m_{\tilde{G}}}{1 \operatorname{MeV}}\right)^2 \right)$$

SuperWIMP scenario

- **1. Motivation** for long-lived $\tilde{l} = \Omega_{\rm DM} h^2$
- 2. searches at the LHC

- superWIMP $\tilde{B} \tilde{l}$ co-annihilation

- 3. at 100 TeV collider?
 - >Muon radiative energy loss for BKG reduction

4. Results

 \succ Expected reach: $m_{\tilde{i}}$

- **1. Motivation** for long-lived $\tilde{l} = \Omega_{\rm DM} h^2$
- 2. searches at the LHC

- superWIMP
- $\widetilde{B} \widetilde{l}$ co-annihilation

- 3. at 100 TeV collider?
 - >Muon radiative energy loss for BKG reduction

4. Results

>Expected reach: *m*_ĩ

10/31

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

• dE/dx [ionization energy loss]

See also: LHCb collaboration [1506.09173]

13/31

1. Motivation for long-lived *l*

2. searches at the LHC

3. at 100 TeV collider?

Muon radiative energy loss for BKG reduction

4. Results

>Expected reach: *m*_ĩ

ATLAS @8TeV [1411.6795]

 \tilde{l} selection flow:

- observed as a muon
- $p_{\rm T} > 70 \, {\rm GeV}$
- |η| < 2.4
- $0.2 < \hat{\beta} < 0.95$

Our 100TeV simulation

 \tilde{l} selection flow:

- observed as a muon
- $p_{\rm T} > 500 \,{\rm GeV}$
- $|\eta| < 2.4$
- $0.4 < \hat{\beta} < 0.95$
- •

ATLAS @8TeV [1411.6795]

 \tilde{l} selection flow:

- observed as a muon
- $p_{\rm T} > 70 \, {\rm GeV}$
- |η| < 2.4
- $0.2 < \hat{\beta} < 0.95$

Our 100TeV simulation

 \tilde{l} selection flow:

- observed as a muon
- $p_{\rm T} > 500 \,{\rm GeV}$
- $|\eta| < 2.4$
- $0.4 < \hat{\beta} < 0.95$
- $E_{\rm loss} < 30 \,{\rm GeV}$

Muon energy loss in matter

[also in PDG Review "Passage of particles through matter"]

[also in PDG Review "Passage of particles through matter"]

- 1. Motivation for long-lived *l*
- 2. searches at the LHC
- 3. at 100 TeV collider?
 - >Muon radiative energy loss for BKG reduction

4. Results

>Expected reach: $m_{\tilde{i}}$

Assumptions

Detector

similar to ATLAS/CMS

- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)

BKG: "Snowmass 2013" BKG set for 100TeV (publicly available)

Pile-up not considered

Assumptions

Detector

- similar to ATLAS/CMS
- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- $p_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

24/31

Result: cut flow

Feng, SI, Shadmi,	Tarem	[<u>1505</u>	. <u>02996</u>]
-------------------	-------	---------------	------------------

LLCP selection flow $(\int L = 1 ab^{-1})$				
	sigi			
	$\tilde{l} = 1 \text{TeV}$			
total	2570	31.8	_	
p _T & η	1840	28.5	9.19×10^{6}	
β	1230	24.6	3.41×10^{5}	
Eloss	1230	24.6	2.78×10^5	
$\epsilon_{acc}\epsilon_{eff}$	48%	77%	_	

Event categorization
$$(\int L = 1 \, \alpha b^{-1})$$

	1 TeV	3 TeV	BKG	
$N_{\rm LLCP} = 0$	483	1.34	(a lot)	
$N_{LLCP} = 1$	378	4.46	2.78×10^5	
$N_{\rm LLCP} = 2$	424	10.1	34.6) SR

 $\blacksquare \widetilde{l} - selection flow$

reconstructed "muon" w.

- *p*_T > 500 GeV
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

Feng, SI, Shadmi, Tarem [1505.02996]

LLCP selection flow $(\int L = 1 ab^{-1})$ signal Eloss reduces 34% of BKG SM BKG $\tilde{l} = 1 \text{ TeV} 3 \text{ TeV}$ $(:: 0.82^2 = 0.66)$ total 2570 31.8 9.19×10^{6} 28.5 1840 p_T & η $|\eta| < 2.4$ 3.41×10^{5} 1230 24.6 β 2.78×10^{5} Eloss 24.6 1230 $0.82 \cdot 0.4 < \hat{\beta} < 0.95$ 48% 77% $\epsilon_{acc}\epsilon_{eff}$ • $E_{\rm loss} < 30 \,{\rm GeV}$ Event categorization $(\int L = 1 \alpha b^{-1})$ 3 TeV BKG 1 TeV 483 $N_{\rm LLCP} = 0$ 1.34 (a lot) Event selection 4.46 2.78×10^{5} $N_{\rm LLCP} = 1$ 378 • two *l*-candidates SR $N_{\rm LLCP} = 2|424$ 34.6 10.1

• $\widetilde{B} - \widetilde{l}$ co-annihilation

... $m_{\tilde{l}} \lesssim 600 \,\mathrm{GeV}$

covered @ LHC

Conclusion

\widetilde{l} -selection flow

reconstructed "muon" w.

- $p_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\text{loss}} < 30 \,\text{GeV}$

LLCP selection flow
$$(\int L = 1 \alpha b^{-1})$$

	m = 1 TeV	3 TeV	BKG
total	2570	31.8	
p _T & η	1840	28.5	9.19×10^{6}
β	1230	24.6	3.41×10^{5}
Eloss	1230	24.6	2.78×10^{5}
$\epsilon_{acc}\epsilon_{eff}$	48%	77%	_

Event categorization
$$(\int L = 1 \alpha b^{-1})$$

Λ	V LLCP	1 TeV	3 TeV	BKG	_
	0	483	1.34	(a lot)	
	1	378	4.46	2.78×10^5	
(2	424	10.1	34.6)SR
_					

Expected exclusion reach @100 TeV

$$m_{\text{excl.}}^{\text{exp}} = \begin{cases} 1.8 - 2.3 \,\text{TeV} & (0.3 \,\text{ab}^{-1}) \\ 2.4 - 3.1 \,\text{TeV} & (1.0 \,\text{ab}^{-1}) \\ 3.2 - 4.0 \,\text{TeV} & (3.0 \,\text{ab}^{-1}) \end{cases}$$

"Muon radiative energy loss"

Appendix: LHC Run 2

1. How searched at the LHC?

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: *m*_{*l*}

A. Note on momentum resolution

B. 14 TeV LHC

Detector

- similar to ATLAS/CMS
- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 14 TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- *p*_T > **100** GeV
- |η| < 2.4
- $0.3 < \hat{\beta} < 0.95$

Event selection
 two *l*-candidates

14 TeV LHC expectation

36/31

Appendix: Momentum resolution @100TeV

Momentum resolution for very-large pT

ATLAS 7 TeV results on muon momentum resolution

Detailed Figures (100TeV)

45/31

46/31

Why $\beta > 0.4?$ (slepton dE/dx)

[also in PDG Review "Passage of particles through matter"]

Mean value of *E*loss?

Averaged muon energy loss in 3m iron (internal)

dE/dx to measure β

Mass measurement = Measurement of velocity β

• TOF : time-of-flight $\beta = \Delta L / \Delta t$

