

Long-lived sleptons at a 100 TeV pp collider

(and at the 14 TeV LHC)

Sho IWAMOTO (岩本 祥)

24 Aug. 2015 SUSY 2015 @ Lake Tahoe

Based on

J. L. Feng (UC Irvine), SI, Y. Shadmi, S. Tarem (Technion) [1505.02996]

Long-lived Particles in Collider Experiments

Take-home SUSI

Expected reach " $m_{\tilde{l}}$ " at 100 TeV pp collider

New phenomenon at 100 TeV pp collider "Muon radiative energy loss"

2. at 100 TeV collider?

Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

10/34

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity mass measurement = $p \& \beta$ measurements ($\beta = v/c$)

- velocity
 - TOF [time-of-flight] $\beta = \Delta L/\Delta t$
 - dE/dx [ionization energy loss]

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

- velocity
 - TOF [time-of-flight] $\beta = \Delta L/\Delta t$
 - dE/dx [ionization energy loss]

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

• LHC ● 100 TeV Collider **ATLAS HectoLAS** 44m 7 25m -**Tile calorimeters** LAr hadronic end-cap and forward calorimeters ixel detecto LAr electromagnetic calorimeters **Toroid magnets ¢**MS Solenoid magnet | Transition radiation tracker Muon chambers Semiconductor tracker **CMS** 7

LHC ATLAS

44m

• 100 TeV Collider

HectoLAS

¢MS

our selection flow

 \tilde{l} = reconstructed "muon" with

- $p_{\rm T} > 500 \,{\rm GeV}$
- $|\eta| < 2.4$
- $0.4 < \hat{\beta} < 0.95$ (from TOF)

Cf.) ATLAS 8 TeV [1411.6795]

- $p_T > 70 \,\text{GeV}$
- |η| < 2.5
- $0.2 < \hat{\beta} < 0.95$

our selection flow

 \tilde{l} = reconstructed "muon" with

- $p_{\rm T} > 500 \,{\rm GeV}$
- $|\eta| < 2.4$
- $0.4 < \hat{\beta} < 0.95$ (from TOF)
- $E_{\rm loss} < 30 \,{\rm GeV}$

Cf.) ATLAS 8 TeV [1411.6795]

- $p_T > 70 \,\text{GeV}$
- |η| < 2.5
- $0.2 < \hat{\beta} < 0.95$

2. at 100 TeV collider?

Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

20/34

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

Muon energy loss in matter

21/34

[also in PDG Review "Passage of particles through matter"]

Muon energy loss in matter

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

Detector

- similar to ATLAS/CMS
- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV (publicly available)
- Pile-up not considered

Assumptions

Detector

- similar to ATLAS/CMS
- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- $p_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

LLCP selection flow $(\int L = 1 ab^{-1})$					
	sigr	SM BKG			
	$\tilde{l} = 1 \text{TeV}$				
total	2570	31.8	_		
p _T & η	1840	28.5	9.19×10^{6}		
β	1230	24.6	3.41×10^{5}		
Eloss	1230	24.6	2.78×10^{5}		
$\epsilon_{acc}\epsilon_{eff}$	48%	77%			

Event categorization
$$(\int L = 1 \, \alpha b^{-1})$$

	1 TeV	3 TeV	BKG	
$N_{\rm LLCP} = 0$	483	1.34	(a lot)	
$N_{LLCP} = 1$	378	4.46	2.78×10^5	
$N_{\rm LLCP} = 2$	424	10.1	34.6) SR

 $\blacksquare \tilde{l}$ -selection flow

reconstructed "muon" w.

- *p*_T > 500 GeV
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

LLCP selection flow $(\int L = 1 ab^{-1})$ signal Eloss reduces 34% of BKG SM BKG $\tilde{l} = 1 \text{ TeV} 3 \text{ TeV}$ $(:: 0.82^2 = 0.66)$ total 2570 31.8 9.19×10^{6} 28.5 1840 p_T & η $|\eta| < 2.4$ 3.41×10^{5} 1230 24.6 β 2.78×10^{5} Eloss 24.6 1230 $0.82 \cdot 0.4 < \hat{\beta} < 0.95$ 48% 77% $\epsilon_{acc}\epsilon_{eff}$ • $E_{\rm loss} < 30 \,{\rm GeV}$ Event categorization $(\int L = 1 \alpha b^{-1})$ 3 TeV BKG 1 TeV 483 $N_{\rm LLCP} = 0$ 1.34 (a lot) Event selection 4.46 2.78×10^{5} $N_{\rm LLCP} = 1$ 378 • two *l*-candidates SR $N_{\rm LLCP} = 2|424$ 34.6 10.1

29/34

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

Conclusion

\overline{l} -selection flow

reconstructed "muon" w.

- *p*_T > 500 GeV
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$
- $E_{\rm loss} < 30 \,{\rm GeV}$

LLCP selection flow
$$(\int L = 1 \, ab^{-1})$$

	m = 1 TeV	3 TeV	BKG
total	2570	31.8	
p _T & η	1840	28.5	$9.19 imes 10^6$
β	1230	24.6	3.41×10^{5}
Eloss	1230	24.6	2.78×10^{5}
$\epsilon_{acc}\epsilon_{eff}$	48%	77%	

Event	categ	gorizatio	n (∫ <i>L</i> =	_1 ab ⁻¹)
		a — . /		_

	N _{LLCP}	1 TeV	3 TeV	BKG	
	0	483	1.34	(a lot)	
	1	378	4.46	2.78×10^5	
	2	424	10.1	34.6)SF
-					

Two take-home's

Take-home SUSI

Expected exclusion reach @100 TeV

$$m_{\text{excl.}}^{\text{exp}} = \begin{cases} 1.8 - 2.3 \,\text{TeV} & (0.3 \,\text{ab}^{-1}) \\ 2.4 - 3.1 \,\text{TeV} & (1.0 \,\text{ab}^{-1}) \\ 3.2 - 4.0 \,\text{TeV} & (3.0 \,\text{ab}^{-1}) \end{cases}$$

"Muon radiative energy loss"

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

A. Note on momentum resolution

B. 14 TeV LHC

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: $m_{\tilde{l}}$

A. Note on momentum resolution

B. 14 TeV LHC

Momentum resolution for very-large pT

<u>ATLAS 7 TeV results on muon momentum resolution</u>

2. at 100 TeV collider?

>Muon radiative energy loss for BKG reduction

3. Our simulation

>Expected reach: *m*_{*l*}

A. Note on momentum resolution

B. 14 TeV LHC

Detector

- similar to ATLAS/CMS
- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 14 TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- *p*_T > **100** GeV
- |η| < 2.4
- $0.3 < \hat{\beta} < 0.95$

Event selection
 two *l*-candidates

14 TeV LHC expectation

Detailed Figures (100TeV)

/34

/34

Why $\beta > 0.4$? (slepton d*E*/dx)

53/34

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

Mean value of Eloss?

Averaged muon energy loss in 3m iron (internal)

dE/dx to measure β

Mass measurement = Measurement of velocity β

- TOF : time-of-flight $\beta = \Delta L / \Delta t$
- dE/dx : ionization energy loss

