

SUSY without *R*-Parity: Cosmological Constraints

岩本 祥 [Sho Iwamoto]

2010/02/01 Thesis Oral Examinations @ UT/Komaba

along my magisterial thesis

"Supersymmetry without *R*-parity: Its Phenomenology" (*R*-parityの保存を課さない超対称理論の現象論的側面)

Outline

[Review]

SUSY without *R*-Parity Cosmological Constraints Our Result (1. LFV) Our Result (2. RpV) Conclusion

[Our Work]

The "Our Work" is...

M. Endo, K. Hamaguchi and <u>Sho Iwamoto</u> *Cosmological Constraints on R-parity violation* arXiv: 0912.0585 [hep-ph] (2009)

<2>

1. SUSY without *R*-parity

We usually impose the *R*-parity on the MSSM.But we have other choices than the *R*-parity, and it's also important.

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<5>

😸 Proton decay problem

<6>

Proton decay @ MSSM

MSSM Superpotential:

<7>

• To impose *B*-conservation with Baryon-parity etc.

• To impose *L*-conservation with Lepton-parity etc. with the assumption that $m_{\text{LSP}} > m_{\text{proton}}$.

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<8>

Why R-parity? $P_R := (-1)^{3B-L+2s}$ (s:spin)

R-parity conservation \rightarrow

• NO B- and L-violating events (proton decay etc.)

We've never observed!

<9>

• Since
$$P_R = \begin{cases} +1 & \text{for SM particles,} \\ -1 & \text{for superparticles,} \end{cases}$$

the LSP cannot decay! [Lightest Supersymmetric Particle]

 \rightarrow A candidate for the *Dark Matter*!

Without *R*-parity

We have 3 choices.

- To forbid **B** & L-violation with **R-parity** etc.
- To impose *B*-conservation with Baryon-parity etc.

 $W \ni H_{\rm u}H_{\rm d}, \ H_{\rm d}L\bar{E}, \ H_{\rm d}Q\bar{D}, \ H_{\rm u}Q\bar{U}, \\ LH_{\rm u}, \ LL\bar{E}, \ LQ\bar{D}, \ \bar{U}\bar{D}\bar{D}$

• To impose *L*-conservation with Lepton-parity etc. (and to assume $m_{\text{LSP}} > m_{\text{proton}}$.)

$$W \ni H_{\rm u}H_{\rm d}, \ H_{\rm d}L\bar{E}, \ H_{\rm d}Q\bar{D}, \ H_{\rm u}Q\bar{U}, \\ LH_{\rm u}, \ L\bar{E}, \ LQ\bar{D}, \ \bar{U}\bar{D}\bar{D}$$

 $\langle 11 \rangle$

Without *R*-parity

$$W_{\rm RPC} = \mu H_{\rm u} H_{\rm d} + y_{{\rm u}ij} H_{\rm u} Q_i \bar{U}_j$$
$$+ y_{{\rm d}ij} H_{\rm d} Q_i \bar{D}_j + y_{{\rm e}ij} H_{\rm d} L_i \bar{E}_j$$

<12>

• MSSM with *R*-parity $\rightarrow W = W_{RPC}$

That is,

•
$$\not{L}$$
 -MSSM \rightarrow
 $W_{\not{L}} = W_{\text{RPC}} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_u$
• \not{B} -MSSM $\rightarrow W_{\not{B}} = W_{\text{RPC}} + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$

Without *R*-parity

$$W_{\rm RPC} = \mu H_{\rm u} H_{\rm d} + y_{{\rm u}ij} H_{\rm u} Q_i \bar{U}_j + y_{{\rm d}ij} H_{\rm d} Q_i \bar{D}_j + y_{{\rm e}ij} H_{\rm d} L_i \bar{E}_j$$

<13>

That is,

We can install **New RpV interactions!** (*R*-parity violating)

 $W_{\underline{L}} = W_{\mathrm{RPC}} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_{\mathrm{u}}$

• $\not\!\!B$ -MSSM $\rightarrow W_{\not\!\!B} = W_{\rm RPC} + \lambda_{ijk}'' \bar{U}_i \bar{D}_j \bar{D}_k$

Why Important?

•What's the Dark Matter?•Is SUSY the truth?

SUSY detection in LHC is important.

R-parity is **Conserved** (missing transverse momentum) \rightarrow LSP yields Large \mathcal{P}_{T} \rightarrow Used as a signal

Then if not? \rightarrow We have to study!

 $\langle 15 \rangle$

What I studied

What I studied (with Hamaguchi, Endo)
 = A detailed analysis of
 cosmological constraints
 on these RpV couplings.

much more **stringent** than from collider experiments.

2. Cosmological Constraints

The violation of *R*-parity may spoil the current Baryon Asymmetry of the Universe.

Baryon asymmetry of the Universe

• Current university:

There's **Baryon**,

and no anti-baryon.

<19>

Baryon

Wash-out with *B*-viol.

However, if we have $W \ni \lambda'' \overline{U} \overline{D} \overline{D}$ interaction, $\widetilde{q} \rightleftharpoons \overline{q} \overline{q}, \quad \widetilde{q}^* \rightleftharpoons qq$

in the early universe.

<20>

And if **frequently enough**, \rightarrow achieve **Equilibrium** : B = 0. $\rightarrow \lambda''$ **must be small enough**!

Kuzmin, Rubakov and Shaposhnikov, 1985 Campbell, Davidson, Ellis and Olive, 1992 Wash-out with L-viol.

<22>

This story does not end here.

• The L-violation also washes-out the Baryon asymmetry in the presence of the <u>Sphaleron</u>!!

Kuzmin, Rubakov, Shaposhnikov, 1985; Ringwald, 1988 Sphaleron

In the early universe $T\gtrsim 100\,{\rm GeV}$

→ the sphaleron process is frequent. (by thermal effects)

Manton, 1983; Klinkhamer and Manton, 1984; 't Hooft, 1976

$$\mathcal{O}_{\rm sph} = \prod_{i} (udd\nu)_{i}$$

= $uddcsstbb\nu_{e}\nu_{\mu}\nu_{\tau}$
 $B = \frac{1}{3}\frac{1$

 $\Delta B = 3, \Delta L = 3; \ \Delta (B - L) = 0$

Manton, 1983; Klinkhamer and Manton, 1984; 't Hooft, 1976 Kuzmin, Rubakov, Shaposhnikov, 1985; Ringwald, 1988

Sphaleron

In the early universe $T \gtrsim 100 \,\mathrm{GeV}$

 \rightarrow the sphaleron process is frequent.

Sphaleron converts Baryon ⇒ Anti-lepton

 $= uddcsstbb\nu_{e}\nu_{\mu}\nu_{\tau}$ $B = \frac{1}{3}\frac{$

$\Delta B = 3, \Delta L = 3; \ \Delta (B - L) = 0$

• If Baryon is short...

sphaleron works right to left.

• If Baryon is short... sphaleron works right to left. $(in T \gtrsim 100 \,\text{GeV})$

Also when (anti-)Lepton is short, sphaleron does left to right.

• Also when (anti-)Lepton is short, sphaleron does left to right. $(in T \gtrsim 100 \,\text{GeV})$

Campbell, Davidson, et al., 1992; Dreiner and Ross, 1983

Wash-out with L-viol.

• But

NOTE ONE **IMPORTANT POINT!** (baryon) (anti-lepton)

[Thesis Oral Exam] SUSY without R-Parity

(2010/02/01)

amoto

<35>

Campbell, Davidson, et al., 1992; Dreiner and Ross, 1983

Wash-out with L-viol.

• But

NOTE ONE **IMPORTANT POINT!** (baryon) (anti-lepton)

[Thesis Oral Exam] SUSY without R-Parity

(2010/02/01)

amoto
<37>

Wash-out with L-viol.

If the Lepton Flavor is not violated

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

Wash-out with L-viol.

• And if at least **one** of L_i is not violated,

thout R-Parity / Sho Iwamoto (2010/02/01) [Thesis Oral Exam]

<38>

Wash-out with L-viol.

Baryon SURVIVES!!!

Wash-out with L-viol.

Now *B* and *L* are **balanced**, and thus no more process.

Endo, Hamaguchi, and IWAMOTO, 2009

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01) (45>

Endo, Hamaguchi, and IWAMOTO, 2009

But remei (tiny) Lepton Flavor Violation

The Standard Model The MSSM

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01) (46>

Wash-out with *L*-viol. \mathbf{I}

Therefore, Only One *L*-violation would...

Wash-out with *L*-viol.

Therefore, Only One L-violation would...

Wash-out with *L*-viol.

• Therefore, Only One *L*-violation would... **"WASH-OUT"** (baryon) (anti-lepton) [Thesis Oral Exam] SUSY without R-Parity (2010/02/01) $\langle 49 \rangle$ amoto

Now We Know

• When $T \gtrsim 100 \,\text{GeV}$ \rightarrow *L*-viol. invades Baryon Assymetry.

Sepecially
 Lepton Flavor Mixing & One L-viol.
 → Baryon Wash-Out

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<50>

Now We Know ? How Large LFV needs? all flavors are mixed

$\rightarrow All \ \textit{L-violation must} \\ \textbf{be Small enough.}$

 $W = W_{\rm RPC} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_{\rm u}$

<51>

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

Now We Know If all flavors are mixed? How Large LFV needs? These are our study! \rightarrow All *L*-violation must be Small enough. $W = W_{\rm RPC} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_{\rm u}$

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<52>

B. Our Result: Lepton Flavor Violation

To mix the Lepton Flavors, how large mixing interaction do we need??

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<53>

Set up: MSSM; before EWPT; Ignoring *R*-parity violating at first;

 $(m_L^2)_{ij}\widetilde{L}_i^*\widetilde{L}_j$ $(m_{\bar{E}}^2)_{ij}\widetilde{\bar{e}}_i^*\widetilde{\bar{e}}_j$ Diagonalize

 $(y_e)_{ij}H_{\rm d}L_iE_j$

Not diagonal (Flavor viol.)

Methods

• We consider the time evolution of $L_i - L_j$.

Lepton number density in *i*-th generation

• By LFV,
$$L_i - L_j \rightarrow 0$$
.

Methods $(y_e)_{ij}H_{\rm d}L_iE_j$ • We consider only the decay of Higgsino $H \rightleftharpoons l_i \tilde{e}_i^*, \quad H \rightleftharpoons l_i e_i^\dagger$ and the antiparticles' process.

Approximations:

- Ignoring the mass of Higgs bosons.
- All particles obey Maxwell-Boltzmann distribution. (instead of Bose/Fermi distrib.)
- Shutting off the sphaleron at T=100GeV.

4. Our Result: *R*-parity Violation

 Now Lepton flavors are mixed.
 Then how about the constraints on RpV couplings?

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto

(2010/02/01)

Methods

Set up:
MSSM; before EWPT;
Lepton flavors are mixed. *R*-parity violated.

Method: The same.

 \rightarrow We examined the time-evolution of B and L (in number density).

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<60>

 $\lambda \lesssim 1 \times 10^{-6}$ $\lambda'' \lesssim 4 \times 10^{-7}$

From similar analysis:

 $\lambda' \lesssim 3 \times 10^{-7}$ $\kappa \lesssim 1.5 \times 10^{-6}$

(For all i, j, k)

• We can **avoid** this "wash-out" with to create current *B***-asymm**. **HERE** (in T < 100 GeV). 0.10.1Washout Ratio Washout Ratio 0.01 0.01 0.001 0.001 10 10^{-4} 2000 1000 500 200 100 50 20 10 2000 1000 500 200 100 50 20 10 Temperature T Temperature 7

5. Conclusion

Now we have a good tool to study LHC phenomenology of RpV-MSSM.

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<65>

Wash-out by *B*-viol.

$W \ni \lambda'' \overline{U} \overline{D} \overline{D}$ $\lambda'' \gtrsim 4 \times 10^{-7}$ $\rightarrow \text{Wash-out }!! \bigotimes$

$m_{\widetilde{q}} = 600 \,\mathrm{GeV}, \ m_{\widetilde{H}} = 300 \,\mathrm{GeV}, \ m_{\widetilde{l}} = 100 \,\mathrm{GeV}$

Wash-out by L-viol. If all Flavors are MIXED, $\lambda \gtrsim 1 \times 10^{-6}$ or $\lambda' \gtrsim 3 \times 10^{-7}$ or $\kappa \gtrsim 1.5 \times 10^{-6}$ \rightarrow Wash-out !!

 $W \ni \lambda_{ijk} L_i L_j \bar{E}_k, \quad \lambda'_{ijk} L_i Q_j \bar{D}_k, \quad \kappa_i L_i H_u$

 $m_{\widetilde{q}} = 600 \,\mathrm{GeV}, \ m_{\widetilde{H}} = 300 \,\mathrm{GeV}, \ m_{\widetilde{l}} = 100 \,\mathrm{GeV}$

Application (LHC)

• Stringent RpV-constraint \rightarrow LSP is a bit "long-lived."

Example:
$$W \ni \lambda_{ij3} L_i L_j E_3$$
 ($\tilde{\tau}$ -LSP)
 $\Gamma_{\tilde{\tau} \to l_i \nu_j} \simeq \frac{|\lambda_{ij3}|^2}{8\pi} m_{\tilde{\tau}}$
 \rightarrow Decay Length $\simeq 50 \, \mu \mathrm{m} \left(\frac{\lambda_{ij3}}{10^{-6}}\right)^{-2} \left(\frac{m_{\tilde{\tau}}}{100 \,\mathrm{GeV}}\right)^{-1}$

(cf. tau-lepton: $87\,\mu{
m m}$)

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01) <69>

Application (LHC)

• Stringent RpV-constraint \rightarrow LSP is a bit "long-lived."

Example: $W \ni \lambda_{ij3}L_iL_jE_3$ ($\tilde{\tau}$ -LSP) Γ **To be a good signal of RpV-MSSM?** $\rightarrow De \longrightarrow Future works!$ (of my following years.)

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01) <70>

That's all. Thank you for listening.

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<71>

Appendices

- <u>Hierarchy Problem</u>
- <u>Rate of Proton Decay</u>
- <u>Collider Constraints</u>
- <u>Sphaleron</u>
- <u>The Other Results</u>

<72>
A. Hierarchy Problem

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<73>

Hierarchy Problem

In Standard Model with Higgs,

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01) <74>

Hierarchy Problem

$$\therefore O(10^{30}) - O(10^{30}) \rightarrow 10^4 !?$$

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<75>

Hierarchy Problem

In MSSM (or other SUSY models),

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<76>

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<77>

B. Rate of Proton Decay

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<78>

Proton decay @ MSSM

MSSM Superpotential contains:

 $W \ni H_{u}H_{d}, H_{d}L\bar{E}, H_{d}Q\bar{D}, H_{u}Q\bar{U},$ $LH_{u}, LL\bar{E}, LQ\bar{D}, \bar{U}D\bar{D}$ L violating B violating

Violation of *both B and L* invoke decay of proton as...

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<79>

Rate of Proton Decay

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<81>

C. Collider Constraints

The RpV interactions are constrained by several experimental facts.

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<82>

Constraints

$W_{\rm RPV} = \kappa_i L_i H_{\rm u} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k$ or $= \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$

• The RpV parameters $\{\kappa, \lambda, \lambda'\}, \{\lambda''\}$ \rightarrow experimental constraints

And the **constraints are important** to study RpV-MSSM.

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<83>

Constraints

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01) <84>

Constraints

D. Sphaleron

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<86>

Sphaleron (a 'wobbly' process) is
a non-perturbative solution of the Standard Model (SM).
Roughly speaking,

$$\mathcal{O}_{\mathrm{sph}} = \Pi_i (u d d \nu)_i$$

= $u d d c s s t b b \nu_e \nu_\mu \nu_\tau$

(87)

Sphaleron $\mathcal{O}_{\rm sph} = uddcsstbb\nu_e \nu_\mu \nu_\tau$ For example: $\bar{u} + d \rightarrow d + c + 2s + t + 2b + \nu_e + \nu_\mu + \nu_\tau$ Note!

Sphaleron processes: $\Delta B = 3, \Delta L = 3; \ \Delta (B - L) = 0$ $\rightarrow \text{Converts} \ B \rightleftharpoons L !!!$

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (20

(2010/02/01)

<88>

Sphaleron $\mathcal{O}_{sph} = uddc$ For example only in the early universe... $\bar{u} + \bar{d} \rightarrow d + c + 2s + t + 2b + \nu_e + \nu_\mu + \nu_\tau$ Note! Sphaleron processes:

$\Delta B = 3, \Delta L = 3; \ \Delta (B - L) = 0$ $\rightarrow \text{Converts} \ B \rightleftharpoons L !!!$

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01)

<89>

Sphaleron

● The sphaleron process:
 > Generally → EXTREMELY rare
 > Thermal effect → enhanced

\odot The effect is present when $T\gtrsim 100\,{\rm GeV}$

(Before the electroweak phase transition.)

E. The Other Results

[Thesis Oral Exam] SUSY without R-Parity / Sho Iwamoto (2010/02/01) <91>

