

SUSY@LHC without R-Parity

岩本 祥 [Sho Iwamoto]

2009/06/08 Lunch Seminar @ UT/Hongo

B. C. Allanach et al. *R-Parity violating minimal supergravity at the LHC* arXiv: 0710.2034 [hep-ph]

Contents

SUSY and R-Parity Other ways What I'm studying Why not Explored? Exemplary Study

(if we have time, that is, if I'm not trapped anywhere.)

B. C. Allanach et al. *R-Parity violating minimal supergravity at the LHC* arXiv: 0710.2034 [hep-ph]

<2>

1. SUSY and R-Parity

●SUSYだと陽子崩壊が起きるから R-Parityを課すのがいいよ。

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<3>

SUSY and R-parity

Standard Model (SM)

- > **VERY NICE** theory!!
- > But has some problems.... such as
 - Hierarchy problem, Neutrino mass,
- \rightarrow The most hopeful theory is....

• SUSY (or Models with supersymmetry)

SUSY and R-parity

But SUSY also has some problems.

- > Many Particles (do they exist?),
- > Many Models (How to break SUSY?),

Many Parameters (Real values are...?)
 And furthermore,

Proton decays!!!

Proton decay @ MSSM

Under MSSM (Minimal Supersymmetric Standard Model), we have following interactions:

$W \ni H_u H_d, \quad H_d L \overline{E}, \quad H_d Q \overline{D}, \quad H_u Q \overline{U},$ $H_u L, \quad L L \overline{E}, \quad L Q \overline{D}, \quad \overline{U} \overline{D} \overline{D}$

And then.....

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<6>

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<7>

SUSY and R-parity

- How should we do?
 - \rightarrow Review the Standard Model case.
- Why does not proton decay under SM?
- \rightarrow Because
- **Baryon number** *B* and **Lepton Number** *L* are accidentally conserved.

(9)

Proton decay @ SM

Under SM, 湯川 interactions are only

 $\mathcal{L}_{\text{yukawa}} = y_u \bar{U} H Q + y_d \bar{D} H^{\dagger} Q + y_e \bar{E} H^{\dagger} L$

and their Hermitian conjugates.

<10>

 \rightarrow *B* and *L* are accidentally conserved by the gauge symmetry.

ightarrow Proton decay, e.g. $p
ightarrow e^+ \pi^0$, is forbidden.

Proton decay @ SM

 Roughly speaking,
 Proton decay, such as $p \rightarrow e^+ \pi^0$ is *B*-/*L*-violating process. • Therefore, "Protect *B* and *L* as SM" may be a good solution.

Prot MSSM conserves neither B nor L!

However, under SUSY models, possible interactions are:

$\begin{array}{c} \textbf{SUSY and R-parity}\\ W \ni H_u H_d, \quad H_d L \bar{E}, \quad H_d Q \bar{D}, \quad H_u Q \bar{U}, \\ H_u L, \quad L L \bar{E}, \quad L Q \bar{D}, \quad \bar{U} D D \end{array}$

• We want to omit these *B/L*-breaking terms.

\rightarrow We introduce **R-Parity**.

$$R_p = (-1)^{3B - L + 2s}$$
 (s:spin)

 $\langle 13 \rangle$

• R-Parity forbids these interactions.

\rightarrow B/L are conserved again!

→ **Proton become stable** again!!!

SUSY and R-parity

• And as you know, since $R_p = \begin{cases} +1 & \text{for SM particles} \\ -1 & \text{for superpartners,} \end{cases}$

R-Parity makes LSP stable, (Lightest Supersymmetric Particle)

 \therefore LSP \rightarrow a Candidate for Dark Matter!!

<15>

2. Other Ways

●でも実はR-Parityじゃない対称性 でもいいよ

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<16>

Other ways

But Why R-Parity?

- > Evidence for R-Parity conserving?
- > No other symmetry can prohibit Proton Decay?
- ... Actually we don't have to **BELIEVE** R-Parity conservation.

<17>

Proton decay @ MSSM

Roughly speaking, Proton Decay needs both B-violating and L-violating term.

<18>

More precise?

Proton decay @ MSSM

 Or a bit precisely, Proton decay doesn't occur if

- Baryon number is conserved OR
- (Lepton number is conserved and $m_{
 m LSP} > m_{
 m proton}$)

More precise?

(19)

Other ways

Therefore we can easily find "other ways."

<20>

<21>

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<22>

<23>

Other ways

That is, we can ADD *B*- or *L*-violating interactions!

[Example]

 $W = \mu H_u H_d + y_e H_d L\bar{E} + y_d H_d Q\bar{D} + y_u H_u Q\bar{U} + bLH_u$ $W = \mu H_u H_d + y_e H_d L\bar{E} + y_d H_d Q\bar{D} + y_u H_u Q\bar{U} + bLH_u + \lambda LL\bar{E}$ $W = \mu H_u H_d + y_e H_d L\bar{E} + y_d H_d Q\bar{D} + y_u H_u Q\bar{U} + \lambda'' \bar{U}\bar{D}\bar{D}$

Other Ways

What is important is "Which terms are in Lagrangian?"

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<25>

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<26>

• By the way,

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<27>

almost ALL

studies on LHC

<28>

is assuming

R-Parity conservation.

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<29>

However, as we've seen,

We can violate R-Parity!

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<30>

R-Parity violation introduce

additional interactions

to the Lagrangian.

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<31>

 Therefore if R-Parity is violated, we will observe

different LHC event from R-Parity conserving case.

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<32>

Then, if R-parity is violated,

What will

happen in LHC?

<33>

Then, if R-parity is violated.

'hat

NUC?

<34>

What I'm studying Therefore I'm interested in

<35>

What I'm studying LHC study without **R-Parity.**

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<36>
What I'm studying

But Why is this theme not explored?

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<37>

What I'm studying

Is there Some PROBLEM?

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<38>

●R-Parityを仮定しないと,LHCで のSUSY eventの検出がとてもむ つかしくなるから。

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<39>

• If R-parity is conserved...

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08) <40>

• If R-parity is conserved...

<41>

• If R-parity is conserved...

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<42>

• If R-parity is conserved...

Why not explored? we can't observe!

Therefore

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<44>

Here, These LSPs are NOT observed!!!

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<45>

However, if R-Parity is not conserved,

LSP DOES

DFCAY!!

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<47>

Therefore

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<48>

Why not explored? oNo more "Large p_{T} " signal

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<50>

• Then how can we "detect" SUSY in LHC-experiment?

This is what I want to study!

 $\langle 51 \rangle$

• It is "case by case."

So, SUSY/LHC without R-Parity is difficult.

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

●この分野での過去の研究を紹介します。

B. C. Allanach et al. *R-Parity violating minimal supergravity at the LHC* arXiv: 0710.2034 [hep-ph]

<52>

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

SUSY model : mSUGRA
R-parity : Broken
LSP : $\tilde{\tau}$ (148 GeV)

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<53>

Now STAU is LSP.

• If R-parity is conserved, LSP = DM must be neutral.

<54>

Now STAU is LSP.

But if no R-parity, then LSP can be charged, and...

Then,what is observed in LHC?

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<56>

• The paper discussed $L_1 L_2 \overline{E}_1$ case & $L_3 Q_1 \overline{D}_1$ case.

• But today we focus only on $L_1L_2\overline{E}_1$ case.

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<57>

 $L_1 L_2 \overline{E}_1$ case

• Only $L_1L_2\bar{E}_1$ is available, i.e. $W = (\text{R conserving}) + \lambda L_1 L_2 E_1$ Parameters $M_0 = A_0 = 0 \,\text{GeV}$ $M_{1/2} = 400 \,\text{GeV}$ $\tan\beta = 13$ $\operatorname{sgn}(\mu) = +$ $\lambda = 0.032@M_{\rm GUT}$

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<58>

<59>

•LSP $\tilde{\tau}$ will decay into 4-leptons.

[Example]

 $\widetilde{\tau} \to \tau \nu_e \mu e^+$

• NLSP \tilde{e}_{R}^{-} will decay as $\widetilde{e}_{\mathbf{R}}^{-} \to e^{-} \nu_{\mu},$

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08) <60>

Simulation Result

Events with sparticle pair production are:

e^+ or μ^+	e^- or μ^-	τ^+	τ^{-}	$p_{_{T}}$	event fraction
2	2	2	2	yes	$35 \ \%$
3	2	2	2	yes	12 %
2	3	2	2	yes	8.3~%
3	3	2	2	yes	7.3~%
2	2	2	1	yes	$4.7 \ \%$
2	2	3	2	yes	4.3~%
2	2	3	3	yes	1.4~%
4	3	2	2	yes	$1.1 \ \%$

•Each event is acompanied by 2-4 jets. •Total cross section is $\sigma_{tot} = 4.8 \times 10^3$ fb. (100-1000events per year @ LHC's best)

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<61>

$L_1 L_2 \overline{E}_1$ case

Features:

Simula Multi lepton final state (≧4) Multi tau final state (≧4, in general) Missing energy (from neutrinos)

e^+ or μ^+	e^- or μ^-	τ^+	τ^{-}	p_{T}	event fraction
2	2	2	2	yes	35 %
3	2	2	2	yes	12 %
2	3	2	2	yes	8.3~%
3	3	2	2	yes	7.3~%
2	2	2	1	yes	$4.7 \ \%$
2	2	3	2	yes	4.3~%
2	2	3	3	yes	1.4~%
4	3	2	2	yes	1.1~%

•Each event is acompanied by 2-4 jets. •Total cross section is $\sigma_{tot} = 4.8 \times 10^3$ fb. (100-1000events per year @ LHC's best)

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

Key point

> Many $\tau s \rightarrow$ Identification of τ is important for LHC!

au is observed as jet, and

> Few jets $(2-4) \rightarrow Not$ so difficult to identify.

And also

> \mathcal{P}_{T} is also a good sign, because...

- And also
- > \mathcal{P}_{T} is also a good sign, because...

Peak of $p_{\rm T}$ is lower than LSP-missing.

<64>

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

• Conclusion In this $L_1L_2\overline{E}_1$ case,

- > Multi tau
- > Multi lepton

> p_T (but not so large as O(100) GeV) are good signs of SUSY events.

<65>

$L_1 L_2 \overline{E}_1$ case

But really?

- We can really distinguish tau-jets?
- No Backgrounds?
 - (i.e. Aren't similar final states created by SM events?)
- Detector simulation!
- How about on other parameter points?
- → Need improvement! (or more detailed analysis.)

That's all. Thank you for listening.

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<67>

Appendix

• <u>Superpotential</u>

Hierarchy Problem

In Standard Model with Higgs,

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<69>

Hierarchy Problem

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<70>

Hierarchy Problem

⊙ In MSSM (or other SUSY models),

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<71>

[Lunch Seminar] SUSY@LHC without R-Parity / Sho Iwamoto (2009/06/08)

<72>