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This thesis is a brief summary of what I learned, and a verbose explanation of what I studied,

in the master’s course.
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PREFACE

I majored the particle physics, especially its phenomenological aspect. In my two

years, I have learned the Standard Model, the supersymmetry and the minimal su-

persymmetric standard model, and the foundation of cosmology, collider physics,

and grand unified theories, and finally studied cosmological constraints on R-parity

violating parameters to write and submit a paper [1] with遠藤基 (Motoi ENDO) and

濱口幸一 (Koichi HAMAGUCHI).

This thesis centers what I did (with the collaborators) in the paper, with some

reviews of the R-parity. Also I present a brief summary of what I learned in the

Appendices.
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ABSTRACT

We investigate in detail the R-parity violating SUSY, especially the con-

straints on its parameters. The constraints are mainly obtained from collider

experiments, and they are of order 10−3–10−4. However, we found that, if

lepton flavor violating processes are strong enough to equilibrate the lep-

ton flavor asymmetry in the early universe, which is naturally expected in

various models, the present baryon–antibaryon asymmetry brings us much

more stringent constraints of order 10−6–10−7.

* * *

「超対称理論」とは，標準模型の内包する不自然さ「階層性問題」

を解決するための有力な理論である。しかし標準模型をそのまま拡張

すると，陽子の寿命が極めて短くなるという破滅が訪れる。ゆえに通

常は R-parityという対称性（制約）を導入して陽子崩壊を回避し，幸
福を実現する。

しかし，実は R-parityではない，より弱い制約であっても，陽子崩
壊の阻止が可能である。そのとき，制約を緩めた結果として新しい結

合（相互作用）が導入されるが，それら新しい結合の大きさは加速器

実験などの結果から量的に制限がかかっており，結合の大きさは比較

的小さくなければならない。

この修士論文では，超対称標準模型に対して R-parityより弱い制約
を課した模型について，その現象論的側面，とりわけ，上述の「実験

的制限」を議論している。

また，もしも初期宇宙で leptonの flavorが十分大きく破れている
場合には，更に厳しい制限が得られ，その制限は昨年再誕した LHC実
験において超対称理論を検証するという試みにも大きな役割を果たす

と期待される。これらの点についても論じている。
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Chapter 1

Prelude

◆SUSY and R-parity

We have the Standard Model, which describes almost all physics below the energy scale 100GeV.

Although it is still under verification, especially the existence of the Higgs boson, the experi-

ments held in the Large Hadron Collider (LHC) will work out the answer soon, which will be a

declaration of the triumph of our philosophy.

However, the Standard Model contains one “unnaturalness,” the hierarchy problem. The Higgs

boson, a sole weird particle in the Standard Model, receives a large mass correction ∆m2 ∼(
1019GeV

)2
, and forces us to realize a miraculous cancellation

m2
bare − ∆m2 = m2

physical, (1.1)

that is,
O

(
1038GeV2

)
− O

(
1038GeV2

)
= O

(
104GeV2

)
. (1.2)

This problem originates from the separation between the electroweak scale 100GeV and the grav-

itational scale 1019GeV, and thus it is called the hierarchy problem.

The most famous answer to this unnaturalness is the supersymmetry (SUSY) [2], a symmetry

which transforms boson to fermion, or vice versa. In a supersymmetric theory, all particles accom-

pany their supersymmetric partners, or “superpartners,” and therefore if we extend the Standard

Model with the SUSY, we have bosonic quarks, bosonic leptons, and fermionic gauge bosons, as

the partners of the quarks, the leptons, and the gauge bosons. They are called “squarks,” “slep-

tons,” and “gauginos,” respectively. They also contribute to the mass correction, and under the

SUSY, the correction is calculated to be zero.*1 Also, the SUSY is significant for grand unifica-

tion theories (GUTs) and string theories.

*1 For a more detailed discussion, See Ref. [3].
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However, very sad to say, the minimal supersymmetric standard model (MSSM) [4, 5, 6], which

is the minimal supersymmetric extension of the Standard Model, has a big problem, not unnatu-

ralness. Under the MSSM, the lifetime of proton is naïvely estimated to be less than one second.

If we would like to obtain the current experimental bounds 1029yr [7], we must yet introduce an

unnaturalness of order 1013.

Why does this proton decay problem emerge? — In the Standard Model, the baryon number B

and the lepton number L are accidentally conserved by the gauge symmetry. For the rigidity of the

gauge symmetry and the skimpiness of the field content, we could not construct B- or L-violating

operators. However, in the MSSM, the field content is doubly extended. Now B- and L-violating

operators can be constructed, which invoke proton decay.

To solve this proton decay problem, usually we impose the R-parity [6], a Z2 symmetry which

forbids B- and L-violating operators again, on the MSSM. This seems a nice way, because we

have never observed B- or L-violating events. Also, this “MSSM with R-parity” provides a very

nice explanation of the dark matter problem. We know that our familiar matters, e.g., electron,

proton, and neutron, account for about 4% of the substance of this universe. [8, 9] We consider

that 21% of the substance is some other matter, called “dark matter,” and the rest 75% is not even

matter, which we call “dark energy.” As we will discuss in this thesis (Chap. B), if the R-parity

is conserved, the lightest supersymmetric particle (LSP) becomes stable in the MSSM scheme.

Therefore, if the LSP has appropriate mass, it can be a good candidate of the dark matter.

As we have seen, the R-parity is a very attractive choice. It explains even the dark matter

problem, as well as the proton decay problem. However, it is installed arbitrarily. We just imposed

by hand. Therefore, fairly speaking, it is also unnatural. We should, to explore this mysterious

universe, consider other choices than the R-parity, as well as the R-parity case.

Actually, we have other ways but the R-parity to circumvent the proton decay problem. If we

impose the conservation of either B or L, proton decay does not occur. We call these models

“SUSY without R-parity,” or “R-parity violating SUSY,” and in this thesis, we will explore the

“SUSY without R-parity.”

◆Why not R-parity?

But why do we abandon the very beautiful R-parity?

— Now we have just celebrated the rebirth of the LHC. In the LHC experiments, the discovery

of the SUSY as well as the Higgs boson is expected. However, the studies on the detection of the

SUSY are, almost all of them, with the assumption of the R-parity conservation.

If the R-parity conservation is realized in nature, we will discover the SUSY at the LHC soon,
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which will solve even the dark matter problem, and then we will come to develop deeper under-

standing of the universe. However, if not? Then, we might be unable to know the existence of

the SUSY even if the SUSY is realized in nature. Also we will have no answer to the dark matter

problem, and even be unable to reject the scenario that the dark matter is the LSP.

In the last decade, 2000’s, We had long waited for the LHC. Now, at last, the time has come.

We should exhaust the experimental results obtained at the LHC, and to this end, it is important

to be free from any obsessions, as well as be stick to the beautiful, attractive scenario.

◆Outline of this thesis

This thesis focuses on the R-parity violating SUSY, and discuss its phenomenological aspects.

The author studied and wrote a paper [1], with two collaborators遠藤基 (Motoi ENDO) and濱

口幸一 (Koichi HAMAGUCHI), about cosmological constraints on the magnitude of the R-parity

violation. We will discuss what we presented in the paper in Chapter 4, with much verbosity.

As preparatory of the discussion, in Chapter 2, we review the R-parity violating SUSY, and some

constraints obtained mainly from collider experiments. Also, in Chapter 3, we review the property

of the universe before the electroweak phase transition (temperature T & 100GeV), which we

considered in the paper. The last part, Chapter 5, is devoted to conclusion and discussion.

Also we present several appendices. Appendix A is a brief review of the Standard Model. In

Appendix B, the SUSY is reviewed, and we discuss the higher dimensional proton decay operators

and the R-parity. We will see that the R-parity is not sufficient to prohibit the proton decay.

Appendix C is a brief review of the cosmology, mainly on the Hubble expansion.
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Chapter 2

SUSY and R-Parity

To begin with, we discuss the R-parity, its effect to the minimal supersymmetric standard model

(MSSM), and the restrictions on the R-parity violating parameters.

Section 2.1 Review: the R-Parity

2.1.1 PROTON DECAY PROBLEM

The superpotential of the MSSM is constructed as*1

W = µHuHd + yui jHuQiŪ j + ydi jHdQiD̄ j + yei jHdLiĒ j

+ κiHuLi +
1
2
λi jkLiL jĒk + λ

′
i jkLiQ jD̄k +

1
2
λ′′i jkŪiD̄ jD̄k.

(2.1)

Here, the ŪD̄D̄ term violates the baryon number B, and three operators LLĒ, LQD̄, and HuL

violate the lepton number L. These terms cause a disastrous event, the decay of proton. The

Feynman diagram of the decay is, for example, described as Fig. 2.1. Here, Ū1D̄1D̄2 (∆B = ±1)

and L1Q1D̄2 (∆L = ±1) interactions invoke p→ πe+ decay. The decay rate Γ is approximately

Γ ∼
∣∣∣λ′112λ

′′
112

∣∣∣2 m5
proton

m4
s̃R

=

∣∣∣λ′112λ
′′
112

∣∣∣2
2.9 ×10−20yr

(
1TeV
ms̃R

)4

, (2.2)

while the lifetime of proton according to this decay mode is measured as longer than 1.6 ×1033yr

(90% confidence level) [7]. Therefore those parameters are restricted as∣∣∣λ′112λ
′′
112

∣∣∣ . 10−27
( ms̃R

1TeV

)2
, (2.3)

which is unnatural. This is the proton decay problem.

*1 Here we use the convention λi jk = −λ jik and λ′′i jk = −λ
′′
ik j. For more detail information, see App. B.1.
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s̃∗R
d

u

u

e+

u†

u

Fig. 2.1 Feynman diagram of the proton decay (with no suppression). The time goes from
left to right, and the arrows denote the directions of the left chirality. For example, initial u and
d must be right-handed, and the intermediate s̃∗R is left-handed, since it is an antiparticle of a
right-handed particle.

○ ○ ○

Thus, in order to solve this problem, we usually install the conservation of the R-parity [6] into

the MSSM. The R-parity is a discrete Z2 symmetry defined as

PR := (−1)3B−L+2s, (2.4)

where B, L and s are the baryon number, the lepton number and the spin of the particle, respec-

tively.

The exact conservation of the R-parity restricts the superpotential as

W = WRPC := µHuHd + yui jHuQiŪ j + ydi jHdQiD̄ j + yei jHdLiĒ j. (2.5)

Note that the R-parity makes B and L again conserved in the MSSM, as they were in the Standard

Model. Under this superpotential, the proton decay could not occur, and again the proton would

be a stable particle.

* * *

Now we seem to have circumvented the proton decay problem. However, to be honest with

nature, we have to consider higher-dimensional operators which can invoke the proton decay.

The discussion about the higher-dimensional proton decay is presented in App. B.2.1, and there

we will conclude that we should use another symmetry, the proton hexality [10], than the R-

parity. Though, the phenomenology under the proton hexality is almost the same as that under the

R-parity, and in almost all cases, we need not look after the difference between the R-parity and

the proton hexality.

Therefore, here we do not pay attention to the higher-dimensional proton decay, and go forward

with the R-parity.
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2.1.2 R-PARITY AND DARK MATTER

Now we have circumvented the proton decay problem for the sake of the R-parity. Actually, this

R-parity conservation brings us another attractive feature. That is, a solution of the dark matter

problem.

The definition of the R-parity is equivalent to the following one:{ PR = +1 for Standard Model particles,
PR = −1 for superpartners.

(2.6)

Consider the lightest particle among the superpartners (R-odd particles). This particle, which is

called the lightest supersymmetric particle (LSP), cannot decay under the R-parity conservation,

because lighter particles than the LSP are all even in the R-parity. Therefore, if the R-parity is

conserved, the LSP is always stable, and would be an attractive candidate for the dark matter.

* * *

Actually, the R-parity conserving scenario is respected for this feature, that is, for one symmetry

solves two problems. As we will see in the next section, resultingly we must impose a constraint

to forbid proton decay even if we are away from the R-parity conserving models. When we come

to impose a symmetry, we surely want to use the one which solves two problem. Therefore, we

usually use the R-parity.

2.1.3 OTHER CHOICES THAN R-PARITY

Here we shall mention an interesting properties of the proton decay. What we would like to say

is, the proton decay does not occur if at least one of the following two properties is satisfied:

1. The baryon parity (−1)3B is conserved.

2. The lepton parity (−1)L is conserved and the LSP is heavier than proton (mLSP > mproton).

The first condition is obvious. If proton would decay, the final state must be B = 0, because

proton is the lightest baryon, and thus the baryon parity must change. Therefore, if the baryon

parity is conserved, proton would not decay. Note that the conservation of the baryon number is a

sufficient condition for this case.

On the other hand, the second one is a bit complicated and needs some explanation. Assume

that the lepton parity is conserved. As we have just seen, the decay process must be ∆B = −1,

and thus (−1)3B−L = −1, by the assumption. This means the R-parity of the final state is odd, so

we need one superparticle in the final state. Therefore, if the lepton parity is conserved, the LSP
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must be lighter than proton for the proton decay to be invoked.

The conservation of the R-parity saturates the first condition as long as we consider only 4-

dimensional operators of the MSSM, and therefore the proton decay is circumvented.

* * *

Now we can see that we have actually three choices to forbid the proton decay.

(i) Forbid both B- and L-violation: The first way is to impose the R-parity, or other symmetries,

so that the superpotential is restricted as

W = WRPC := µHuHd + yui jHuQiŪ j + ydi jHdQiD̄ j + yei jHdLiĒ j. (2.7)

In this case, B and L are conserved as the Standard Model. Moreover, with great pleasure, the

LSP becomes stable, and can be a candidate for the dark matter.

Note that we consider only the MSSM scheme. If we introduced other particles to extend

the MSSM, the R-parity might not forbid B- or L-violation. (Imagine a superfield which carries

3B = L = 1.)

(ii) Forbid B-violation: The second way is to forbid B-violating interactions and restrict the su-

perpotential as

W = WRPC + κiHuLi +
1
2
λi jkLiL jĒk + λ

′
i jkLiQ jD̄k (2.8)

with imposing some symmetry. In this case the LSP is not responsible for the dark matter.

(iii) Forbid L-violation: The last way is to forbid L-violating interactions with some symmetry.

The superpotential would be

W = WRPC +
1
2
λ′′i jkŪiD̄ jD̄k, (2.9)

and in this case the LSP must be heavier than proton for fear proton might decay. Also the LSP is

not a dark matter candidate.

Now we consider only the MSSM, and its 4-dimensional operators. In this scheme, the
conservation of the lepton parity and the lepton number are equivalent.

Also note that we distinguish these three patterns by the form of the superpotential, not
the symmetry imposed on, because we are interested in phenomenology.

The discussion on what happens when we consider higher dimensional operators, and
that on the symmetries which we should impose in each case, are presented in App. B.3.

The first choice is widely discussed. In this thesis, we focus on the second and the third cases,

the R-parity violating MSSM.
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Section 2.2 Constraints on the Couplings

Now we have circumvented the proton decay problem. However, the R-parity violating couplings

κi, λi jk, λ′i jk; λ′′i jk (2.10)

have other constraints, mainly from collider experiments.

We can eliminate the couplings κi by redefining the fields Hd and Li. Thus we use the following

form as the superpotential:

W = WRPC +
1
2
λi jkLiL jĒk + λ

′
i jkLiQ jD̄k (2.11)

for the L-violating scenario, and

W = WRPC +
1
2
λ′′i jkŪiŪ jD̄k (2.12)

for the B-violating scenario, and discuss the constraints and the bounds on the R-parity violation

parameters.

We have 9 + 27 L-violating parameters and 9 B-violating parameters. For simplicity, we will

focus only on the absolute value, that is, we will ignore complex phases.

◆Single-coupling bounds

We saw in the last section that the product of λ′′ and λ′ is restricted as∣∣∣λ′112λ
′′
112

∣∣∣ . 10−27
( ms̃R

1TeV

)2
. (2.13)

This is surely a constraint on the R-parity violating couplings, especially a constraint on a product

of the couplings.

In the context of the constraints, however, usually “single-coupling bounds,” which are the

bounds on the indivisual R-parity violating couplings when only the particular coupling is non-

zero, are discussed. This is mostly for simplicity, but not very unreasonable, because the bounds

of products are generally much more severe than the single-coupling bounds, as we saw for the

proton decay case.

In this thesis, we mainly focus on the single-coupling bounds.

* * *
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However, we should be careful when we discuss single-coupling bounds, because several con-

straints are those on the difference of the R-parity violating couplings. We will see examples of

such situations soon in the following discussion.

◆Preparation

To simplify expressions, we follow Refs. [11, 12] and define

ri jk(X) :=
1

4
√

2GF

∣∣∣λi jk

∣∣∣2
m2

X

, r′i jk(X) :=
1

4
√

2GF

∣∣∣∣λ′i jk

∣∣∣∣2
m2

X

, (2.14)

and in addition,

ri jk;lmn(X) :=
1

4
√

2GF

<
(
λ∗i jkλ

′
lmn

)
m2

X

, (2.15)

where mX is the mass of a particle X and GF is the Fermi constant, 1.116 ×10−5GeV−2.

2.2.1 µ AND τ DECAY: FOR λi jk ETC.

First we consider the leptonic decay of µ and τ, as discussed in Ref. [13], and previously in

Refs. [11, 14] (charged current universality). This discussion yields the bounds on λi jk.

Here we consider the decay rate of the events

ei → νie jν
†
j , (2.16)

and corresponding two values:

Rτ =
Γ(τ→ ντ e ν†e)

Γ(τ→ ντ µ ν
†
µ)
, Rτµ =

Γ(τ→ ντ µ ν
†
µ)

Γ(µ→ νµ e ν†e)
. (2.17)

In the Standard Model, or the R-parity conserving MSSM (Rp-MSSM), these processes are

invoked mainly by the gauge interaction mediated by W-boson. However, if we have LLĒ term, it

also contributes to the process. See Fig. 2.2 for the Feymnan diagrams of the Rp-MSSM process

and LLĒ-induced case.

Therefore, the values Rτ and Rτµ are shifted by the R-parity violating processes. The shifts are

calculated as

Rτ

(Rτ)SM
= 1 + 2

∑
k

[
r13k (̃eRk) − r23k (̃eRk)

]
, (2.18)

Rτµ

(Rτµ)SM
= 1 + 2

∑
k

[
r23k (̃eRk) − r12k (̃eRk)

]
, (2.19)
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ẽRk

µL

νµ

eL

ν†e
λ12k

−λ∗12k

(a)

ẽRk

τL

ντ

eL

ν†e
λ13k

−λ∗13k

(b)

ẽRk

τL

ντ

µL

ν†µ
λ23k

−λ∗23k

(c)

W

µL

ν†e

eL

νµ

(Rp-MSSM)

Fig. 2.2 Possible R-parity violating contributions to (a) µ → eν†eνµ, (b) τ → eν†eντ, (c) τ →
µν†µντ, and corresponding Rp-MSSM process.

○ ○ ○

which means that the difference between the experimental result and the Standard Model expected

values of Rτ and Rτµ give us constraints on the R-parity violating couplings ri jk, that is, λi jk.

The calculated results under the Standard Model v.s. the experimental results are

Rτ

(Rτ)SM
=

1.028(4)
1.028

Rτµ

(Rτµ)SM
=

1.312(6) ×106

1.309 ×106 , (2.20)

where the Standard Model precision values (denominators) are obtained from Ref. [12], and the

experimental results (numerators) are from Ref. [7]. Therefore we obtain the following 2σ = 95%

bounds:

−0.0512 <
∑

k

[
|λ13k |2 − |λ23k |2

] (100GeV
mẽRk

)2

< 0.0512 (Rτµ) (2.21)

−0.0482 <
∑

k

[
|λ23k |2 − |λ12k |2

] (100GeV
mẽRk

)2

< 0.0622. (Rτ) (2.22)

* * *

If we see these bounds from the viewpoint of single-coupling bounds, they are

λ13k < 0.051, λ23k < 0.051, λ12k < 0.048, (2.23)
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for m = 100GeV. However, we can see easily that, e.g.,

λ131 = λ231 = λ121 = 0.3, others = 0 (2.24)

is allowed within these constraints. As you can see, we had better be aware that the single-

couplings are not the true bounds of the parameters, and we should review the constraining

equations, e.g., Eqs. (2.21) and (2.22), even if we overlook the bounds on the products of the

couplings.*2

2.2.2 π AND τ DECAY: FOR λ′i1k ETC.

Next, in order to constrain λ′i1k, we consider the values

Rπ =
Γ(π− → e ν†e)

Γ(π− → µ ν†µ)
, Rτπ =

Γ(τ→ π− ν†τ)

Γ(π− → µ ν†µ)
. (2.25)

This discussion is also from Ref. [13] and Refs. [11, 14]. The processes induced by the R-parity

violating terms, and that of the Rp-MSSM, are in Fig. 2.3.

The decay rates of the events are shifted by the R-parity violating processes as [15, 16]*3

Γ(π→ eiν
†
i )

ΓSM(π→ eiν
†
i )
= 1 +

2
|Vud |

∑
k

[
r′i1k(d̃Rk) − 2m2

π

mei (mu + md)
riki;k11(̃eLk)

]
, (2.26)

Γ(τ→ π−ντ)
ΓSM(τ→ π−ντ)

= 1 +
2
|Vud |

∑
k

[
r′31k(d̃Rk) − 134.2MeV

mu + md
rk33;k11(̃eLk)

]
, (2.27)

and thus the values Rπ and Rτπ are also shifted, as

Rπ

(Rπ)SM
= 1 +

2
|Vud |

∑
k

[
r′11k(d̃Rk) − r′21k(d̃Rk)

−7.624 ×104MeV
mu + md

r1k1;k11(̃eLk) +
368.7MeV
mu + md

r2k2;k11(̃eLk)
]

(2.28)

Rτπ

(Rτπ)SM
= 1 +

2
|Vud |

∑
k

[
r′31k(d̃Rk) − r′21k(d̃Rk)

−134.2MeV
mu + md

rk33;k11(̃eLk) +
368.7MeV
mu + md

r2k2;k11(̃eLk)
]

(2.29)

Meanwhile, the Standard Model calculated results (denominators) and the experimental values

(numerators) are [7, 12]

Rπ

(Rπ)SM
=

1.230(4) ×10−4

1.235 ×10−4

Rτµ

(Rτµ)SM
=

9.775(71) ×103

9.771+0.009
−0.013 ×103

. (2.30)

*2 We will see in the next discussion that overlooking the bounds on the products is not so bad because generally the
products are severely constrained.

*3 We calculate Eq. (2.27) by ourselves in App. 2.i, while Eq. (2.26) is obtained from Ref. [16].
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d̃Rk

u†L

dL

eLi

ν†i

λ′i1k

−λ′∗i1k

(a)

ẽLk

u†L

dR

eRi

ν†i

λ′k11 −λ∗kii

(b)

W−

u†L

dL

eLi

ν†i

(*)

d̃Rk

τL

ντ

dL

u†L
−λ′31k

λ′∗31k

(c)

ẽLi

τR

dR

u†L

ντ
−λ∗i33

−λ′i11
(d)

W−

τL

u†L

dL

ντ

(**)

Fig. 2.3 Possible R-parity violating contributions to (a,b) π− → eiν
†
j , (c,d) τ → π−ντ, and

(*,**) corresponding Rp-MSSM processes. Note that i , k in (b), and i , 3 in (d).
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Therefore we obtain the following 2σ = 95% bounds:

−0.0582 <
∑

k

[∣∣∣λ′11k

∣∣∣2 − ∣∣∣λ′21k

∣∣∣2] 100GeV
md̃Rk

2

−<
[
α1λ

∗
1k1λ

′
k11 − α2λ

∗
2k2λ

′
k11

] (100GeV
mẽLk

)2
 < 0.0282, (Rπ) (2.31)

−0.0722 <
∑

k

[∣∣∣λ′31k

∣∣∣2 − ∣∣∣λ′21k

∣∣∣2] 100GeV
md̃Rk

2

−<
[
α3λ

∗
k33λ

′
k11 − α2λ

∗
2k2λ

′
k11

] (100GeV
mẽLk

)2
 < 0.0752, (Rτπ) (2.32)

where

α1 =
7.624 ×104MeV

mu + md
, α2 =

368.7MeV
mu + md

, α3 =
134.2MeV
mu + md

. (2.33)

* * *

These are, in the terms of the single-coupling bounds,

λ′11k < 0.028, λ′21k < 0.058, λ′31k < 0.075, (2.34)

for m = 100GeV.*4 We can see that the products of two (or more) coupling constants are severely

restricted. This is because they generally invoke exotic events not included in the Rp-MSSM.

2.2.3 SEMILEPTONIC D AND LEPTONIC Ds DECAY: FOR λ′i2k

Now the turn for λ′i2k. The discussion similar to what we did for the π-decay in the previous

section yields some other bounds [13]. Now our targets are

RD0 :=
Γ(D0 → µ+νµK−)
Γ(D0 → e+νeK−)

, (2.35)

RD+ :=
Γ(D+ → µ+νµK0)

Γ(D+ → e+νeK0)
, (2.36)

R∗D+ :=
Γ
(
D+ → µ+νµK∗(892)0

)
Γ
(
D+ → e+νeK∗(892)0

) , (2.37)

and

RDs (τµ) :=
Γ(D+s → τ+ντ)
Γ(D+s → µ+νµ)

. (2.38)

*4 Actually our calculated result is a bit different from the original one of Ref. [12], which gives λ′31k < 0.06.
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d̃Rk

cL

νi

sL

eL
+
i

−λ′i2k

λ′∗i2k

(a)

ẽLk

cL

νi

e+Ri

sR

−λ′k22

λ∗iki

(b)

W

cL

νi

e+L i

sL

(Rp-MSSM)

Fig. 2.4 Possible R-parity violating contributions to (a,b) D0 → K−e+i νi, and corresponding
Rp-MSSM processes. Note that i , k in (b).
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Note that the mesons are:

D0 ≡ (cū), D+ ≡ (cd̄), Ds ≡ (cs̄); K− ≡ (sū), K0 ≡ (sd̄). (2.39)

Thus the contribution of the R-parity violating interactions in RD0 , RD+ and R∗D+ are as Fig. 2.4,

and in RDs (τµ) are the ones similar to (a), (b) and (*) of Fig. 2.3.

Here we ignore the bounds on the products for simplicity, that is, ignore (b) of both Figs. 2.4

and 2.3. Then, the shifts are calculated as

RD0

(RD0 )SM
=

RD+

(RD+ )SM
=

R∗D+(
R∗D+

)
SM

= 1 +
2
|Vcs|

[
r′22k(d̃Rk) − r′12k(d̃Rk)

]
(2.40)

and
RDs (τµ)(

RDs (τµ)
)
SM
= 1 +

2
|Vcs|

[
r′32k(d̃Rk) − r′22k(d̃Rk)

]
. (2.41)

Considering the experimental values and the Standard Model calculated results, we can obtain

−0.262 <
∑

k

[∣∣∣λ′22k

∣∣∣2 − ∣∣∣λ′12k

∣∣∣2] 100GeV
md̃Rk

2

< 0.152 (RD0 ) (2.42)

−0.242 <
∑

k

[∣∣∣λ′22k

∣∣∣2 − ∣∣∣λ′12k

∣∣∣2] 100GeV
md̃Rk

2

< 0.372 (RD+ ) (2.43)

−0.252 <
∑

k

[∣∣∣λ′22k

∣∣∣2 − ∣∣∣λ′12k

∣∣∣2] 100GeV
md̃Rk

2

< 0.302 (R∗D+ ) (2.44)

−0.242 <
∑

k

[∣∣∣λ′32k

∣∣∣2 − ∣∣∣λ′22k

∣∣∣2] (100GeV
mẽRk

)2

< 0.332 (
RDs (τµ)

)
, (2.45)

as the 2σ-bounds, and for the single-coupling bounds,

|λ′22k | < 0.15, |λ′12k | < 0.24, |λ′32k | < 0.33. (2.46)

2.2.4 THEN HOW ARE λ′i3k?

Now it is the time when we should discuss λ′i3k. However, we cannot apply the above discussions

here, because these terms correspond to the bottom and the top quark. Thus we must find another

way.

To this end, it is appropriate to see the contribution to the one-loop correction of Ze+i e−i vertex,

but since this is much more complicated than the other discussions, we do not discuss in detail.

The corresponding diagrams are as Fig. 2.5, and this yields the following 2σ-bounds:

λ′13k < 0.47, λ′23k < 0.45, λ′33k < 0.58. (2.47)

These are much looser bounds than we had obtained in the previous discussions.
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d̃Rk

tL

d̃Rk

Z

e+L i

eLi

−λ′i3k

−λ′∗i3k

(a)

tL

tL

d̃RkZ

e+L i

eLi

−λ′i3k

−λ′∗i3k

(b)

Z

e+i

ei

(*)

Z

e+i

ei

(**)

Fig. 2.5 The contribution to the one-loop correction of Ze+i e−i vertex. The upper figures are
from the R-parity violating interactions. The lower ones are of the Standard Model, from which
we can obtain the Rp-MSSM contribution by changing two of the three intermediate particles
to their superpartners.
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2.2.5 CONSTRAINTS ON B-VIOLATING TERMS: λ′′i jk

It is very difficult to obtain the constraints on the B-violating terms from collider experiments,

because in the discussion we have to examine the inner structure of baryons or mesons, and to

take the QCD effects into consideration. Thus we do not present the procedure of obtaining the

constraints here.

Actually, B-violating terms are severely constrained from cosmology, which we will discuss in

Chap. 4. In the discussion, we will see that the B-violating terms are constrained as

λ′′i jk . 10−6
( mq̃

100GeV

)1/2
, (2.48)

which is rough estimation of Eq. (4.2), for all i, j, and k, or√∑
i jk

∣∣∣∣λ′′i jk

∣∣∣∣2 . (4–5) ×10−7, (2.49)

which is our more precise analysis, Eq. (4.44).

2.2.6 A LIST OF SINGLE-COUPLING BOUNDS

Here as the conclusion of this chapter we present a list of the current single-coupling bounds,

Table 2.1.

Here, we do not use the results derived from the neutrino mass bounds in this table except λ′133,

for which no bounds are known, because the mass of neutrino largely depends on other structures.

Also we do not use the gravitino- or axino-corresponding events as sources.

Our discussion covers the starred values. The sources of the other values are: (†) λ12k are from

CKM unitarity, (‡) λ′111 from the neutrino-lees double beta decay, (§) λ′121 and λ′131 from atomic

physics parity violation, (¶) λ′132 from forward-backward asymmetry, (#) λ′23k and λ′33k from the

contribution of the loop effect to Z-boson decay, ([) λ′′11k, λ′′312 and λ′′313 from neutron-antineutron

oscillation, and (||) λ′′2 jk and λ′′i23 from the renormalization group. We do not discuss these sources

here.

We can see that almost all constraints are of order 10−1–10−3. We will see in Chap. 4 that we

can give much more stringent constraints on not only B-violating couplings (as we mentioned

above) but also L-violating couplings if the lepton flavor is mixed enough in the early universe.
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λi jkLiL jLk λ′i jkLiQ jD̄k λ′′i jkŪiD̄ jD̄k

121 0.03(a)† 111 0.0007(b)‡ 211 0.06(a)? 311 0.06(a)? 112 ∼ 10−7(c)[

122 0.03(a)† 112 0.03(a)? 212 0.06(a)? 312 0.06(a)? 113 ∼ 10−7(c)[

123 0.03(a)† 113 0.03(a)? 213 0.06(a)? 313 0.06(a)? 123 1.25(c)||

131 0.05(a)? 121 0.03(a)§ 221 0.1(a)? 321 0.3(a)? 212 1.25(c)||

132 0.05(a)? 122 0.2(a)? 222 0.1(a)? 322 0.3(a)? 213 1.25(c)||

133 0.05(a)? 123 0.2(a)? 223 0.1(a)? 323 0.3(a)? 223 1.25(c)||

231 0.05(a)? 131 0.03(a)§ 231 0.45(b)# 331 0.58(b)# 312 0.002(c)[

232 0.05(a)? 132 0.28(b)¶ 232 0.45(b)# 332 0.58(b)# 313 0.003(c)[

233 0.05(a)? 133 (0.0004)(c) 233 0.45(b)# 333 0.58(b)# 323 1.12(c)||

Table 2.1 A list of the current single-coupling bounds when the mass of all the superparticles
are 100GeV. The data are obtained from (a) Ref. [12], (b) Ref. [13], (c) Ref. [11]. See the text
for details.
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Appendix 2.i The RPV Contribution to τ→ π−ντ

In this section we will calculate Eq. (2.27), the contribution of the R-parity violating terms to the

Rp-MSSM result. The notations and conventions are all from Peskin’s book [17] (See: App. A.1

for example).

This discussion is along Ref. [16].

The operators which induce the processes are

OSM = −
(

4GFV∗ud√
2

) (
dγµPLu

) (
ντγµPLτ

)
(2.50)

O(c) = −
∑

k

∣∣∣λ′31k

∣∣∣2
m2

d̃Rk

(
dPLτ

)
(ντPLu) (2.51)

= −
∑

k

∣∣∣λ′31k

∣∣∣2
2m2

d̃Rk

(
dγµPLu

) (
ντγµPLτ

)
(2.52)

O(d) =
∑

k

λ∗k33λ
′
k11

m2
ẽLk

(ντPRτ)
(
dPLu

)
. (2.53)

Here we employed the Fierz identity in the derivation of the second operator. Then we convert the

u and d quarks to the pion, using [16]

〈0| u(x)γµPL
Rd(x) |π(p)〉 = ± fπ√

2
· pµe−ipx (2.54)

〈0| u(x)PL
Rd(x) |π(p)〉 = ∓ fπ√

2
· m2

π

mu + md
e−ipx, (2.55)

where fπ is the pion decay constant: fπ ' 92.4MeV. m (and p in the following equations) denotes

the mass (and the momentum) of each particle (pion, τ, ντ, and up/down quark).

Now the amplitude (matrix element)M is calculated as

MSM =

(
−

4GFV∗ud√
2

)
·
(
− fπ√

2
pµ

)
· us(pν)

[
γµPR

]
ut(pτ)

=
fπ√
2
·

4GFV∗ud√
2

us(pν)
[
/pπPR

]
ut(pτ) (2.56)

Mtotal = MSM +
fπ√
2
·
∑

k

∣∣∣λ′31k

∣∣∣2
2m2

d̃Rk

us(pν)
[
/pπPR

]
ut(pτ)

− fπ√
2

∑
k

λ∗k33λ
′
k11

m2
ẽLk

m2
π

mu + md
us(pν)PRut(pτ). (2.57)
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Here note that the symbol us/t(p) denotes not the up quark (as previous equations) but the Fourier

transformation of the particle, as Peskin’s book [17, Chap. 3].

Therefore, using the approximation

|Mtotal|2 ' |MSM|2 + 2<
(
M∗SMMRPV

)
, (2.58)

we obtain the following result:

MSM = C ·
[
4(pπ · pν)(pπ · pτ) − 2m2

π(pν · pτ)
]

(2.59)

<
(
M∗SMMRPV

)
= C ·

 r′31k(d̃Rk)
|Vud |

[
4(pπ · pν)(pπ · pτ) − 2m2

π(pν · pτ)
]

−2rk33;k11(̃eLk)
|Vud |

m2
π

mu + md
mτ(pν · pπ)

]
. (2.60)

Here C = |2GFVud fπ|2, but we do not interested in this value. We have neglected the phase of Vud

for simplicity.

Since this is a 2-body decay process, taking τ’s rest frame, we can determine the momenta as

pτ =
(
mτ

0

)
, pπ =

(√
m2
π + p2

p

)
, pν =

(
‖p‖
p

)
; ‖p‖ =

√
m2
τ + m2

π − mτ, (2.61)

and obtain the following result:

Γ(τ→ π−ντ)
ΓSM(τ→ π−ντ)

= 1 +
2
|Vud |2

[
r′31k(d̃Rk) − 134.4MeV

mu + md
· rk33;k11(̃eLk)

]
. (2.62)

We use the numerical value 134.4MeV instead of the symbolic notation for simplicity.
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Chapter 3

Universe before EWPT

In this chapter we discuss the properties of the universe between the SUSY breaking and the

electroweak phase transition (EWPT). We consider the era when the temperature T of the universe

is 10TeV & T & 100GeV. Here we concentrate on the minimal supersymmetric standard model

(MSSM).

Section 3.1 Preliminaries

3.1.1 MASS STRUCTURE OF HIGGS SECTOR

To begin with, we shall consider the property of the Higgs sector before the EWPT.

The mass terms of the Higgs bosons under the MSSM are given as, if the R-parity is con-

served,*1

V = m1
2
∣∣∣H0

u

∣∣∣2 + m2
2
∣∣∣H0

d

∣∣∣2 − (
bH0

u H0
d + H. c.

)
+
g2

1 + g
2
2

8

(∣∣∣H0
u

∣∣∣2 − ∣∣∣H0
d

∣∣∣2)2

where m1
2 := |µ|2 + m2

Hd
, m2

2 := |µ|2 + m2
Hu
,

(3.1)

and in order to invoke the electroweak symmetry breaking, the parameters must be so that the

minimum is not at H0
u = H0

d = 0. (See Eqs. (B.2) and (B.4) for the meaning of each parameters.)

However, in the early universe where its temperature T is above & 100GeV, thermal effects

“hold up” the potential and thus the minimum would be H0
u = H0

d = 0. Therefore, in this era,

the electroweak symmetry SU(2)weak × U(1)Y is (still) alive. In this thesis we do not discuss the

details of the thermal effects, and go on with regarding the electroweak symmetry as unbroken.

*1 This potential is also discussed in App. B.i with the R-parity violating terms. Or as a nice review, see Ref. [3,
Sec. 7].
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Meanwhile, higgsinos, four Weyl fermions, form two Dirac fermions whose mass are both |µ|:

W ⊃ µHuHd + H. c. (3.2)

−→ L ⊃ µ(H̃+u H̃−d − H̃0
u H̃0

d) + H. c.

= −|µ|
(
η∗H−d H+u

†
) ( H+u
ηH−d

†

)
− |µ|

(
η∗H0

d H0
u
†
) ( H0

u
ηH0

d
†

)
=: −|µ|Ψ+DΨ

+
D − |µ|Ψ0

DΨ
0
D. (3.3)

Here, Ψ+D and Ψ0
D are Dirac fermions, and η is a phase defined as −η∗ := µ/|µ|, which is with no

importance.

Note that these higgsinos do not mix with gauginos (or leptons) to form neutralinos or chaginos

before the EWPT.

3.1.2 SPHALERON

In the Standard Model, we have an anomalous interaction, called the “sphaleron”*2 process.[18,

19, 20] This is a 12-fermion interaction which is symbolically illustrated as

O =
∏

i=1...3

(
qR

i qG
i qB

i li
)
, (3.4)

where i is the generation index, and R, G and B denote the SU(3)strong color. For example, we

have
c†s† → u d d s t b b νe νµ ντ (3.5)

interaction. What is important is that this process violates the baryon and lepton number B and L,

but does not violate B − L. Now in all the interactions, B − L is conserved.

This process originates the anomaly of the baryon- and lepton-current: JB
µ and JL

µ :

JB
µ :=

1
3

∑
generation

∑
color

qLγµqL, JL
µ :=

∑
generation

lLγµlL; (3.6)

∂µJBµ = ∂µJLµ =
−3g2

2

16π2

1
2

Tr
(
εµνρσWµνWρσ

)
(3.7)

= ∂µ

[
−3g2

2

16π2 ε
µνρσ Tr

(
WνρWσ +

2
3

igWνWρWσ

)]
. (3.8)

(See App. A for notation. Especially note that Wµ is the W-boson field and Wµν is its field

strength.) We can see that the B and L are violated here, by the instanton effect, that is, the

*2 sfaleron, derived from sfalerìc.
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sphaleron process can be regarded as the transition between vacua, B and L of which are different

by the same number. Here also note that B − L is conserved.

As this process is the transition between vacua, between which an energy barrier stands, its

probability is suppressed by the factor

exp
(
−8π2

g2
2

)
≈ 10−81. (3.9)

However, Kuzmin, Rubakov, and Shaposhnikov [21] found that in early universe before the EWPT

this process is enhanced by thermal effects, and even exceeds the Hubble expansion rate. Also

Ringwald calculated [22] the rate to find that the process would achieve equilibrium.

Their study is based on the Standard Model, not the MSSM, but can be applied to our MSSM

case. In the MSSM, we have another SU(2) fermion, the higgsino. Therefore, the interaction is

illustrated as*3

O = h̃uh̃d

∏
i=1...3

(
qR

i qG
i qB

i li
)
. (3.10)

In summary: there is the sphaleron process in the early universe before the EWPT, and it is

strong enough to achieve equilibrium. It conserves B − L, but violates B and L.

3.1.3 RELATION BETWEEN NUMBER AND CHEMICAL POTENTIAL

Next we derive the relation between the number density of a particle and its chemical potential.

Here we define the “yield” N of a particle by the number density n as

N :=
n

T 3 , (3.11)

where T is the temperature of the universe. This is expressed by the distribution function f and

the degree of freedom g of the particle as

N =
n

T 3 =
g

T 3

∫
d3 k

(2π)3 f (k). (3.12)

f (k) is the Maxwell–Boltzmann, the Fermi–Dirac or the Bose–Einstein distribution

fMB(k) =
1

e(E−µ)/T , fBE(k) =
1

e(E−µ)/T − 1
, fFD(k) =

1
e(E−µ)/T + 1

. (3.13)

E is the energy, which is given by
√

m2 + ‖k‖2, and m and µ are the mass and the chemical

potential of the particle, respectively.

*3 Note that these higgsinos form Dirac fermion, as we discussed just above.
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However, number density cannot be calculated analytically, as long as we use the Bose–Einstein

or the Fermi–Dirac distribution.*4 To obtain an analytical expression, we ought to use the approx-

imation that the particle obeys the Maxwell–Boltzmann distribution. Then we have the following

expression:

NMB =
g

π2 F2

(m
T

)
exp

(
µ

T

)
, where Fi(x) := x2Ki(x). (3.14)

Here, Ki(x) is the modified Bessel function of the second kind. If the particle is massless, we use

F2(0) = 2.*5

In the next section, we will calculate relations between chemical potentials in the early universe.

Actually, during the calculation, we will come down to use this approximated expression.

Section 3.2 Relations between Chemical Potentials

◆Gauge bosons and gauginos

Start from the gauge bosons. We have the gauge self couplings W0–W0–W+–W− and W0–W+–

W−. This means that we have both X → YW0W0 and X → YW0 events, and therefore X ≡ Y+2W0

and X ≡ Y + W0. (The symbol ≡ denotes “equal in terms of the chemical potentials” in this

section.) Thus we know that W0 ≡ 0 and W+ +W− ≡ 0. Also this fact tells us that the sum of the

chemical potential of a particle and its antiparticle is zero: X ≡ −X, as well as that of B-boson is

zero: B ≡ 0.

Here, the Majorana mass of W̃ and B̃ allows us to have the process

eR + ẽ∗R → B̃→ B̃† → e†R + ẽR (3.15)

etc. as Fig. 3.1. Thus we know W̃ ≡ B̃ ≡ 0, and the chemical potentials of a particle and its

superpartner are the same: X̃ ≡ X. Also we have 3-point interaction W̃–W̃+–W̃−, which tells us

W̃+ + W̃− ≡ 0. Considering gaugino–gaugino–gauge-boson interactions, we conclude

B ≡ W ≡ B̃ ≡ W̃0 ≡ 0, W+ ≡ W̃+ ≡ −W− ≡ −W̃−, X ≡ −X ≡ X̃ ≡ −X̃. (3.16)

We will not discuss the relations for gluon and gluino, since they are much more complicated.

Actually, most of these discussions which we have done for gauge bosons and gauginos will be

spoiled by the (strong) presumption which we will introduce later.

*4 Incidentally, we present more detailed discussion on these distribution functions and the numerically calculated
results in App. C.1.2.

*5 The expression (3.12) results in F2(0) = 2 if we use f = fMB and m = 0, while the limit of the modified Bessel
function gives the same result: limx→0 x2Ki(x) = 2.
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ẽ∗R

eR

ẽR

e+R

Fig. 3.1 In the presence of Majorana mass, this kind of processes occurs, which guarantees
that the chemical potential of the particle is zero. See the text for details.

○ ○ ○

◆Matter and Higgs sector

Let us go on the quark sector. Since we have the CKM mixings which are strong enough to

achieve equilibria, the chemical potentials of quarks are flavor-independent. Therefore

uL ≡ cL ≡ tL ≡ dL +W+ ≡ sL +W+ ≡ bL +W+, (3.17)
uR ≡ cR ≡ tR, (3.18)
dR ≡ sR ≡ bR. (3.19)

The lepton sector actually has mixings, PMNS mixings, but here we leave the chemical poten-

tials as flavor-dependent. We will discuss whether the mixings in lepton sector achieve equilibria

or not in the next chapter. Now we take only

νi ≡ eLi +W+ where i = 1, 2, 3 (flavor index), (3.20)

into consideration.

For the Higgs sector, we know

H+u ≡ H0
u +W+, H0

d ≡ H−d +W+. (3.21)

That is all for the quark, lepton, and Higgs sector.*6

*6 Note that we have already derived the relationship of the chemical potential of antiparticles and superpartners at
Eq. (3.16).
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Usually when we discuss whether the process is strong enough to achieve equilib-
rium or not, we compare the process rate versus the Hubble parameter, as we will see in
Sec. 4.1.2. The Hubble parameter H is, as is discussed in App. C.1.3, roughly given as

H ∼ 25T 2

Mpl
. (3.22)

On the other hand, considering quark scattering mediated by W-boson as the CKM
mixing process, the rate of the process under thermal effects is approximated as (See:
Ref. [23] or Eq. (4.3))

Γ ∼ (g2θ)2

4π
T, (3.23)

where g2 is the gauge coupling ≈ 0.65 and θ is the CKM mixing angle. The CKM mixing
angle is ≈ 0.2 for Q1–Q2 mixing and ≈ 0.008 for Q1–Q3 mixing [7]. Therefore,

Γ

H
∼ θ2 · 1014

( T
100GeV

)−1

� 1, (3.24)

and thus CKM mixing is considered to be achieve equilibria.

* * *

From this assumption, usually it is said that

if θ & 10−7, the process is equilibrated, and if not, the equilibrium is not achieved.

However, to discuss precisely, we have to solve the Boltzmann equation, which describes
the time evolution of a value. This is what we will do in the next chapter.

◆A strong presumption

Before discussing the 湯川 interactions, we introduce an above-mentioned strong presumption.

That is, all the particles must have been generated with gauge-invariance. For example, the

number of electrons is the same as that of electron-neutrinos, and the number of red-colored

quarks is the same as blue- and green-colored quarks. Since the masses of the particles in a gauge

multiplet is the same before the EWPT, these equalities in numbers yield equalities in chemical

potentials

uL red ≡ uL blue ≡ uL green, eL ≡ νe, (3.25)

and so on. Now we know
W+ ≡ W̃+ ≡ g ≡ g̃ ≡ 0. (3.26)
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◆Superpotential and sphaleron process

Now we have only 12 independent chemical potentials, those of the following particles:

H0
u , H0

d , uL, uR, dR, liL, liR. (3.27)

This fact tells us that “the particles in a supermultiplet have the same chemical potentials.” There-

fore, from now, we use names of the supermultiplets instead of particles to express relationships

between chemical potentials:

Hu, Hd, Q, Ū, D̄, Li, Ēi. (3.28)

(Be careful that, as the right-handed fermion are barred, Ū ≡ −uR, and so on.)

Anyway, we have other three types of constraints, those which come from the superpotential,

the sphaleron process, and the conservation of the hypercharge.

The constraints from the湯川 interactions are expressed as

µQ + µD̄ + µHu = 0, µQ + µD̄ + µHd = 0, µLi + µĒi
+ µHd = 0. (3.29)

Similarly, the µ-term gives us a relation

µHu + µHd = 0. (3.30)

The sphaleron process results in the following relation, as we discussed in Sec. 3.1.2:

9µQ +
∑

i

µLi + µHu + µHd = 0. (3.31)

◆Hypercharge conservation

The last constraint, the conservation of the hypercharge, is a bit complicated. As we are under the

“generated with gauge invariance” presumption, the sum of the hypercharge over all the particles

in the whole universe is zero. Therefore∑
i=generations

(
1
6

n[Qi] −
2
3

n[Ūi] +
1
3

n[D̄i] −
1
2

n[Li] + n[Ēi]

)
+

1
2

n[Hu] −
1
2

n[Hd] = 0, (3.32)



30 Magisterial Thesis / Sho Iwamoto

where n[X] denotes the whole effective number of the particles which belong to the supermultiplet

X. For example,

n[Ū] :=
∑

i

n[Ūi]

=
∑

generation

∑
color

(
−nuR − nũR + nu†R

+ nũ∗R

)
= 9 · T 3

π2

[
F2

(muR

T

)
+ F2

(mũR

T

)] (
2 sinh

µŪ

T

)
' 9 · 2T 3

π2

[
2 + F2

(mũR

T

)]
µŪ

T

=: 9 · 2T 3

π2 geff

(mũR

T

)
µŪ

T
.

(3.33)

We have used Eq. (3.14) with approximating the distribution functions as the Maxwell–Boltzmann

type, the fact that quarks are massless before the EWPT, the approximation that sinh(µ/T ) ' µ/T ,

and guR = gũR = gu†R
= gũ∗R = 1. Note that n[Ū] denotes the effective number of antiparticles, as

well as µŪ . We have also defined

geff (x) := 2 + F2(x) = 2 + x2K2(x). (3.34)

Next we do the following approximations to simplify Eq. (3.32):

• all the squarks have the same mass mq̃,

• all the leptons have the same mass ml̃,

• all the Higgs bosons are massless.

Then we obtain

0 = geff

(mq̃

T

) 1
6 · 18µQ − 2

3 · 9µŪ +
1
3 · 9µD̄

T

+
∑

i

geff

(ml̃

T

) − 1
2 · 2µLi + 1 · µĒi

T

+ geff

(mH̃

T

) 1
2 · 2µHu − 1

2 · 2µHd

T

(3.35)

=
2
3

[
geff

(mq̃

T

)
− geff

(ml̃

T

)] µLi

T

−
[
9geff

(mq̃

T

)
+ 3geff

(ml̃

T

)
+ 2geff

(mH̃

T

)] µHd

T
.

(3.36)
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◆Conclusion

As a result, we can express the chemical potentials of the MSSM particles by only four parameters

µLi and µHd as

µQ = −
1
3
µL, µŪ =

1
3
µL + µHd , µD̄ =

1
3
µL − µHd ,

µĒi
= −µLi − µHd , µHu = −µHd , (3.37)

where
µL :=

1
3

∑
i

µLi . (3.38)

Also µL and µHd are related as follows:

µHd = −CHd (T ) µL, (3.39)

where

CHd (T ) :=
2geff

(
mq̃/T

)
+ 6geff

(
ml̃/T

)
9geff

(
mq̃/T

)
+ 3geff

(
ml̃/T

)
+ 2geff

(
mH̃/T

) . (3.40)

When we assume that geff = 4 for all the particles, which means all the particles are
massless or the temperature is extremely high, we obtain

CHd =
4
7
, (3.41)

µbaryon =
1
3

(
18µQ − 9µŪ − 9µD̄

)
= −4µL (3.42)

µlepton =
∑

i

(
2µLi − µĒi

)
=

51
7
, (3.43)

and the well-known result reappears:

µbaryon =
28
79

(
µbaryon − µlepton

)
. (3.44)
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Chapter 4

Cosmological Limit to RPV
Parameters

Now we are ready to discuss the strong constraints on the R-parity violating couplings which come

from cosmology. This chapter is devoted to the constraints.

Section 4.1 Introduction

4.1.1 OVERVIEW

There the baryon is, though the antibaryon is not. We can create antibaryon only in colliders, and

even when we create antibaryon, they immediately annihilate.

Why does this universe have baryon, and no antibaryon? Our Standard Model contains the

baryon–antibaryon symmetry, but the universe does not, and the baryon number B is positive:

B > 0. How come the symmetry broke up in the early universe? How was this baryon–antibaryon

asymmetry brought to us?

This is one of the biggest problem in cosmology. Even in 1967, when we did not know τ-lepton

or charm quark, Sakharov [24] put forward the famous three conditions. Also, many models to

achieve the asymmetry are proposed. In this thesis we do not discuss the models, and focus on the

following important fact:

large B-violation might wash out the asymmetry.

Especially the ŪD̄D̄ coupling in the MSSM do wash out, and thus critical.

However, the story does not end here. Before the electroweak phase transition (EWPT) of the

universe, there is the sphaleron process, as we discussed in Sec. 3.1.2. The sphaleron process

transforms baryon into lepton, or vise versa, and thus

violation of lepton number L might also wash out the baryon asymmetry.
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Though a good loophole to avoid this L-violation constraint was found. Note that the sphaleron

process preserves not only B − L but also

1
3

B − Le
1
3

B − Lµ
1
3

B − Lτ (4.1)

respectively. Therefore, supposing that one of the lepton number, say L3 (or Lτ), is exactly con-

served, sphaleron could not erase B even when the other lepton numbers are completely violated.

B/3 which corresponds to L3 would survive in this case.

However, this loophole can be covered. Davidson pointed out [25] that lepton flavor violation

(LFV) would spoil the separated B/3 − Li conservation. Think again. If we have LFV processes,

and they mix all the three generations e, µ and τ, then the separated lepton number Li are not “con-

served number,” and therefore any L-violation process must be small lest the baryon asymmetry

should be washed out.

* * *

This is our story. Endo, Hamaguchi, and the author found [1] that such LFV processes which

can be strong enough to wash out the baryon asymmetry are naturally expected in typical SUSY

GUT models, and calculated the bounds on the R-parity violating parameters. In this chapter, we

review the work more verbosely.

But before reviewing the work, we will move back to past discussions as an introduction.

4.1.2 B-VIOLATION ERASES BARYON–ANTIBARYON ASYMMETRY

As we mentioned, B-violating processes spoils the baryon asymmetry. Bouquet and Salati es-

timated [23] these bounds. They assume that the existing baryon asymmetry was produced in

T & 100GeV era, and under this assumption concluded that the B-violating coupling λ′′ must

satisfy

λ′′ < 10−6
( mq̃

100GeV

)1/2
(4.2)

lest the asymmetry should be washed out. This constraint is much stricter than those which we

obtained in Sec. 2.2.
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The procedure of their estimation is as follows.
They considered qq → q̃γ̃ as a annihilation process, and estimate the annihilation rate
Γ and the Hubble expansion rate H (See: App. C.1.3) as

Γ ≈ αλ′′2

4π
T 5

(T 2 + m2
q̃)2

, H ≈ 20
T 2

Mpl
, (4.3)

and also consider the baryon-washout process would be out of equilibrium if

H � Γ for T & mq̃. (4.4)

These conditions result in the bound (4.2).

4.1.3 L-VIOLATION MAY ALSO BE HARMFUL

Also L-violating processes would, in presence of the sphaleron effects, wash out the baryon asym-

metry. This feature was first pointed out by Kuzmin, Rubakov and Shaposhnikov [21] in 1985,

and Campbell, Davidson, Ellis and Olive applied [26] this effect to the constraints on the R-parity

violating couplings. The bounds are first estimated [27, 28] as

λ, λ′, λ′′ . 10−7
(mSUSY

1TeV

)1/2
(4.5)

by discussions similar to what we explained just above, and subsequent works [29, 30] support

this estimation.

It was pointed out in Ref. [31] that the wash out can be avoided if at least one of B/3 − Li is

conserved. Dreiner and Ross [32] applied this fact to the R-parity violating couplings. Davidson

mentioned [25] that the lepton flavors are unlikely to be conserved in supersymmetric standard

models, and also noted that LFV effect would cover the loophole. Then the constraints on the

L-violationg couplings reappear. In the paper, the following bounds are estimated:

λ, λ′ < 10−7,
(m2

L)i j

(m2
L)ii
. 5 × 10−2, (4.6)

where the former is the baryon wash out bounds for the lepton-number violating couplings, and

the latter one denotes how small should the lepton flavor violation be in order to realize the “sep-

aratedly conserved” loophole. Here, (m2
L)i j is the slepton mass matrix in the MSSM »»»SUSY part

(B.4).

* * *

Now what we will discuss is much more nice calculation of these bounds, which Endo, Ham-

aguchi, and the author presented in Ref. [1].
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4.1.4 CLARIFICATION

Here we clarify the condition: we cannot obtain the current universe (the presence of the baryon

asymmetry) if

• the present baryon asymmetry was created before EWPT, and

• the B-violating processes are strong enough to wash out the baryon asymmetry,

or

• the present baryon asymmetry was created before EWPT,

• there is no source of baryon asymmetry after the EWPT,

• the L-violating processes are strong enough to wash out the baryon asymmetry, and

• these L-violating processes invade to all the lepton generations, i.e., for all Li’s, at least one

of the following conditions is satisfied:

◦ it is directly attacked, e.g. we have W ⊃ HuLi, LiLĒ, or LiQD̄ interactions, or

◦ it is mixed by LFV processes with another generation L j, and L j is attacked.

Section 4.2 Lepton Flavor Violation Bounds

First, we discuss how fast the lepton flavor is mixed under LFV processes, in other words, how

large violation is necessary to mix the flavors. Here, we do not introduce any R-parity violations

to concentrate on the effect of the LFV.

In the MSSM with the R-parity, we have the following lepton interaction terms:

• gauge interactions,

• 湯川 interactions,

• »»»SUSY slepton mass terms m2
L and m2

Ē
,

• a »»»SUSY trilinear term ae (which we ignore here).

Usually, to discuss the low energy phenomenology of the LFV, we use the basis where the 湯

川 matrix is diagonal as well as the gauge interactions. In this basis, we have a term

W ⊃ (ye)iiLiĒiHd, (4.7)

which has no mixing, in the superpotential, and soft slepton masses with lepton flavor violation

−L ⊃ (m2
L)i jL̃∗i L̃ j + (m2

Ē)i j˜̄ei ˜̄e j (4.8)

in the Lagrangian.
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To discuss the LFV effects in the early universe, however, it is more appropriate to take the

basis where the slepton mass matrices are diagonal [25], as well as the gauge interactions. Note

that the gauge interaction is more suitable to be diagonalized than the 湯川 interactions, because

the gaugino–slepton–lepton interactions are stronger than the 湯川, and therefore we cannot let

the gauge coupling not diagonal with making the湯川 matrices diagonal. Thus, starting from the

basis where the湯川matrix is diagonal, we rotate the leptons and the sleptons by the same matrix,

which guarantees that the gauge interactions remain diagonal, so that the mass matrices should be

diagonalized. Assuming that the mixing angles are small, we can express these rotations as

Li → Li +
∑
i, j

θL
i jL j, Ēi → Ēi +

∑
i, j

θĒ
i jĒ j, (4.9)

where θi j ' −θ ji are the mixing angles.

○ ○ ○
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Fig. 4.1 Time evolution of N[L2−L3] for slepton mixing angles θL/Ē
23 = 1 × 10−6, 1.5 × 10−6,

and 2 × 10−6, from the top to the bottom, for mH̃ = 600GeV, ml̃ = 200GeV, and tan β = 10.
The vertical dashed line denotes the sphaleron decoupling temperature T∗ ' 100GeV. The
normalization is arbitrary. The time evolution of N[L1−L3] for θL/Ē

13 = (1− 2)× 10−6 is almost the
same.
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Note that those mixing angles are different from the dimensionless parameters

(δL)i j :=
(m2

L)i j

(m2
L)ii

, (δĒ)i j :=
(m2

Ē
)i j

(m2
Ē
)ii
, (4.10)

which are familiar in the context of the LFV rare processes. They are related as

θL
i j '

(
m2

L

∆m2
L

)
(δL)i j , θĒ

i j '
 m2

Ē

∆m2
Ē

 (δĒ)i j . (4.11)

In this new basis, the LFV effects appear only in the湯川 couplings, which are given by

WLFV ⊃
∑
i, j

hi jLiĒ jHd where hi j := (ye)iiθ
Ē
i j + (ye) j jθ

L
ji. (4.12)

For instance,

h23 := h2θ
Ē
23 + h3θ

L
32

'
(
0.0061 · θĒ

23 + 0.10 · θL
32

) ( tan β
10

)
.

(4.13)

We now estimate how much the lepton flavor asymmetry Li−L j is erased due to the above LFV

interactions. To this end, we solve the Boltzmann equation for the evolution of Li − L j. Here, for

simplicity, we include only the effect of the higgsino decay and its inverse process, H̃ � L̃iĒ j and

H̃ � Li
˜̄E j, assuming that the higgsino is heavier than the sleptons. Other processes such as 2→ 2

scatterings and those with Higgs bosons may be comparably important, but it is expected that the

bounds on the mixing angles will change only by order one factors. Note that these additional

effects only strengthen the erasure effect, and therefore the bounds which we will derive should

be regarded as conservative ones.

For an introduction of the Boltzmann equation, see App. 4.ii. In the appendix, we also derive

the Boltzmann equation which describes the lepton difference Li − L j as

T
d

dT
N[Li−L j] =

16(Γi j + Γ ji)
3H

F1

(
mH̃/T

)
F2

(
ml̃/T

)
+ 2

N[Li−L j], (4.14)

where T is the temperature of the universe, H is the Hubble parameter, Fi(x) := x2Ki(x) with

Ki(x) being the modified Bessel functions of the second kind. N[Li−L j] is defined as

N[Li−L j] := N[Li] − N[L j] (4.15)

:=
n[Li] − n[L j]

T 3 , (4.16)
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and here N[Li], n[Li], etc. denote the “effective yield,” or the effective number density, of lepton in

i-th generation (See: Eq. (3.33) as an example). The partial decay rate Γi j is given by

Γi j =
|hi j|2
32π

mH̃

1 − ml̃
2

mH̃
2

2

, (4.17)

where mH̃ and ml̃ are the masses of higgsino and sleptons, respectively. We assume that the

slepton masses are approximately the same, as the end of Sec. 3.2. Note that the Boltzmann

equation (4.14) is symmetric under the exchange of the left-handed and right-handed slepton

mixings, θL
i j ↔ θĒ

i j, i.e., they give the same effect on the evolution N[Li−L j].

In Fig. 4.1, the time evolution of NL2−L3 is shown for θL/Ē
23 ' (1 − 2) × 10−6, for mH̃ = 600 GeV,

ml̃ = 200 GeV, and tan β = 10. One can see that the flavor asymmetry is rapidly decreased for T .

mH̃ , and almost washed out for θL/Ē
23 & 10−6. The time evolution of NL1−L3 for θL/Ē

13 ' (1−2)×10−6

is essentially the same.

In Fig. 4.2 and Fig. 4.3, we show the dilution factors

D[Li−L j] :=
N[Li−L j](T∗)

N[Li−L j](T � T∗)
(4.18)

as functions of the mixing angles θL/Ē
i j , where T∗ ∼ 100 GeV is the temperature when the sphaleron

process is decoupled. In the numerical calculations, we take T∗ = 100 GeV, mH̃ = 200, 600 and

1200 GeV, ml̃/mH̃ = 0.4 and 0.8, and tan β = 10. Note that the dilution effect is weaker for

mH̃ = 200GeV than for 600GeV. This is because for mH̃ = 200GeV the duration of the Li − L j

erasure is shorter than for mH̃ = 200GeV.

One can see that the lepton flavor asymmetries L2 − L3, L1 − L3, and L1 − L2 are washed away

for

θL/Ē
23 & (1 − 3) × 10−6 ·

( tan β
10

)−1

, (4.19)

θL/Ē
13 & (1 − 3) × 10−6 ·

( tan β
10

)−1

, (4.20)

θL/Ē
12 & (2 − 5) × 10−5 ·

( tan β
10

)−1

, (4.21)

respectively. (We take the value where the dilution factor becomes DLi−L j ' 0.01.) If any two of

these inequalities are simultaneously satisfied, all lepton flavor numbers become essentially the

same: L1 = L2 = L3, and hence B − L1/3 = B − L2/3 = B − L3/3.

4.2.1 NOTE: SUCH LFVS ARE NATURALLY EXPECTED!

Here we will present that these (enough large) LFVs are naturally expected from the viewpoint of

higher energy theories.
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Fig. 4.2 The dilution factor D[L2−L3] (D[L1−L3]) as a function of the slepton mixing angle θL
23

(θL
13) or θĒ

23 (θĒ
13), for mH̃ = 600, 200 and 1200 GeV, from the left to the right. The slepton mass

ml̃ is 0.4mH̃ for the solid lines and 0.8mH̃ for the dashed lines. We took T∗ = 100GeV and
tan β = 10.
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Fig. 4.3 The same as Fig. 4.2 but for the dilution factor D[L1−L2] as a function of the slepton
mixing angle θL/Ē

12 .
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◆m2
L and the right-handed neutrinos

First, let us see that m2
L would be an actual source of the LFVs in the presence of the right-handed

neutrinos. This discussion is along Ref. [33]. We describe the right-handed neutrinos in the

superfield notation as N̄i, like the right-handed electrons Ēi. They are singlets of both SU(2) and

SU(3), and have no hypercharge. Thus the superpotential is modified as

WRPC+= (yν)i j HuN̄iL j + (µN)i j N̄iN̄ j, (4.22)

and also the »»»SUSY part is modified as

L»»SUSY+= −
(
m2
ν

)
i j
˜̄ν∗i˜̄ν j −

(
(bN)i j ˜̄νĩν̄ j + (aν)i jHu˜̄νiL̃ j + H. c.

)
(4.23)

Here, for simplicity, we consider only the R-parity conserving terms.*1 This superpotential

WRPC explains the experimental fact that the (left-handed) neutrino mass are extremely small,

with the see-saw mechanism [34, 35]. Here, µN is assumed to be extremely large.

Note that we cannot diagonalize both ye and yν without disturbing the SU(2) gauge symmetry.*2

Here we have diagonalized ye, and thus yν is not diagonal. Then, the right-handed neutrinos

contribute to the renormalization group equation. Fig. 4.4 is one of such contributions, and the

equation is modified as

d
d log E

(
m2

L

)
i j
=

[
d

d log E
(m2

L)i j

]
MSSM

+
1

16π2

[(
y†νyνm

2
L + m2

Ly
†
νyν + 2y†νm

2
Lyν

)
i j

+2m2
Hu

(
y†νyν

)
i j
+ 2

(
a†νaν

)
i j

]
. (4.24)

○ ○ ○

H̃u

NRk

l̃ j l̃i
m2

L p j yνkp yν
∗
ki

Fig. 4.4 One of the new contributions to the renormalization group equation of m2
L under the

right-handed neutrino N̄i.

*1 For your information: WRPV+= biNi + y
′
i HuHdN̄i + y

′′
i jkN̄iN̄ jN̄k.

*2 In the Standard Model, we diagonalize both of them, which results in flavor violating W±–q–q interactions. See
App. A.2.3.
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Here, we assume that the »»»SUSY parameters are unified at the unification scale Mpl as(
m2

L

)
i j
= m2

0δi j, m2
Hu
= m2

0; (aν)i j = a2
0. (4.25)

Then we obtain an approximate solution for the additional contributions to the mass terms:(
∆m2

L

)
i j
≈ − 1

16π2 (y†νyν)i j

(
6m2

0 + 2a2
0

)
log

Mpl

MR
, (4.26)

where MR is the mass of the right-handed neutrino. (We assume that the masses are nearly inde-

pendent of the flavor index.)

Finally we obtain

(
m2

L

)
i j
≈


m2

0 (i = j),

−
3m2

0 + a2
0

8π2 (yν)∗ki (yν)k j log
Mpl

MR
(i , j).

(4.27)

Thus δL, which is defined as Eq. (4.10), is now

(δL)i j ≈
3 + a2

8π2 (yν)∗ki (yν)k j log
Mpl

MR
≈ 0.1 · (yν)∗ki (yν)k j , (4.28)

where a2 := a2
0/m

2
0. Note that the rotation angle θL is much larger than δL, as we saw in (4.11).

Therefore we can conclude that our results Eqs. (4.19)–(4.21) are naturally expected.

◆m2
Ē

and GUTs

Next, we discuss to conclude that m2
Ē

can also be expected to be large enough to mix the lepton

flavors when we consider SU(5) grand unified theories (GUTs).

It is expected that our U(1)Y , SU(2)weak and SU(3)color gauge symmetries are unified at some

very high energy, and many models are proposed as such unified theories. Here we consider SU(5)

GUTs, where our three gauge symmetries are unified to one SU(5) gauge symmetry at some high

energy scale MGUT.

○ ○ ○

Table 4.1 The property of the heavy particles which we introduce in this section. See Tab. B.1
for the MSSM particles.

Neutrino (chiral multiplet)

SU(3) SU(2) U(1)

N̄i 1 1 0

Colored Higgs (chiral multiplet)

SU(3) SU(2) U(1)

HC
u 3 1 −1/3

HC
d 3̄ 1 1/3
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To be honest, it is a bit difficult to embed the R-parity violating SUSY models into
SU(5) GUTs, because we need B- or L-parity conservation instead of that of R-parity,
and they draw a sharp contrast between baryon and lepton.

You can see this feature by considering the interactions, which we will present in
Eq. (4.32). The R-parity violating interactions ŪŪD̄, LQD̄ and LLĒ appear all together.

However we do not discuss those matters in this thesis.

Our superfields are embedded in SU(5) representations as follows:

10i 3 Qi, Ūi, Ēi, 5i 3 D̄i, Li, 5H 3 HC
u ,Hu, 5H 3 HC

d ,Hd. (4.29)

Here, HC
u and HC

d are “colored Higgs” of up-type and of down type.

The colored Higgs particles are considered to be extremely heavy, lest the proton should
decay via the interactions ŪD̄HC

d and QLHC
d (See Eq. (4.32)) with a process like Fig. 2.1).

The decay rate is

Γ ∼
∣∣∣(yC)11

∣∣∣4 m5
proton

M4 × 3 =
1

1 ×1032yr


∣∣∣(yC)11

∣∣∣
10−6

4 (
1010GeV

M

)4

, (4.30)

where M is the mass of the colored Higgs. Thus the mass must be heavier than (at least)
1010GeV, and usually considered as ∼ MGUT.

We can form the following gauge singlets:

10 10 5 10 5 5 5 5, (4.31)

and thus the following terms in the superpotential can be obtained:

(yA)i j 10i10 j5H → −4 (yA)i j

[
QiQ jHC

u +
(
ŪiQ j + Ū jQi

)
Hu +

(
ŪiĒ j + Ū jĒi

)
HC

u

]
,

(yB)i jk 10i5 j5k → (yB)i jk

[
ŪiD̄ jD̄k − ĒiL jLk − Qi

(
L jD̄k − LkD̄ j

)]
,

(yC)i j 10i5 j5H → (yC)i j

(
ŪiD̄ jHC

d − ĒiL jHd − QiD̄ jHd + QiL jHC
d

)
,

µ 5H5H → µ
(
HC

u HC
d + HuHd

)
,

µi 5H5i → µi

(
HC

u D̄i + HuLi

)
.

(4.32)

Now consider that we are above GUT scale MGUT, and let us do the mass-diagonalization

procedure as we did in the Standard Model (See: App. A.2.3). In other words, we will write down

Eq. (4.32) in the basis which we usually use in the Standard Model. We have the following terms

in the superpotential:

W ⊃ (yu)i jŪiHuQ j + (yu)i jHC
u ŪiĒ j − (yd)i jD̄iHdQ j − (yd)i jĒiHdL j, (4.33)

where yu is symmetric (at least at the GUT scale), but not normal*3, so we have to use the singular

*3 A matrix A is “normal” when it satisfies AA† = A†A.
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Ū3

HC
u

˜̄e j ˜̄ei

m2
Ē p j X3p X∗3i

Fig. 4.5 One of the new contribution to the renormalization group equation of m2
Ē

under the
colored higgs. Here Xi j := (y′u)i(VCKM)i j

○ ○ ○

value decomposition method. The procedure is similar to what we will present in App. A.2.3, but

here, as yd = ye, the rotations are

Q1 7→ Ψ†uQ1, Q2 7→ Ψ†dQ2, L 7→ Ψ†dL, U 7→ Φ†uU, D 7→ Φ†dD, E 7→ Φ†dE, (4.34)

and the superpotential would be diagonalized:

W ⊃ (y′u)iiŪiHuQi + (y′u)iiHC
u Ūi

(
ΨuΦ

†
d

)
i j

Ē j − (y′d)iiD̄iHdQi − (y′d)iiĒiHdLi. (4.35)

(Note that this equation is written in mass eigenstates, and y′u and y′d are diagonal.) What is

important is the non-diagonal term. This non-diagonal matrix ΨuΦ
†
d is the very Cabibbo–小林–益

川 matrix VCKM, and therefore we have

W ⊃ (y′u)iHC
u Ū′i (VCKM)i j Ē′j (4.36)

in the superpotential. This term would contribute to the renormalization group equation of m2
Ē

as

Fig. 4.5.

Defining
Xi j := (y′u)i (VCKM)i j , (4.37)

we can approximately write down the contribution to m2
Ē

as

(
∆m2

Ē

)
i j
≈ − 3

16π2 (X†X)i j

(
6m2

0 + 2a2
0

)
log

Mpl

MGUT
(4.38)

' − 3
16π2 (y′u)2

33(VCKM)∗3i(VCKM)3 j

(
6m2

0 + 2a2
0

)
log

Mpl

MGUT
. (4.39)

Here we assume that the mass of the colored Higgs is ∼ MGUT, and the coefficient 3 comes from

the SU(3)color symmetry.
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Therefore δĒ is

(δĒ)i j ≈
3(3 + a2)

8π2 (y′u)2
33(VCKM)∗3i(VCKM)3 j log

Mpl

MGUT
(4.40)

∼


10−4 for 1–2 mixing,
10−2 for 2–3 mixing,
10−3 for 1–3 mixing.

(4.41)

Therefore θĒ is also expected to be large enough to mix all the lepton flavors, and it is natural

for us to assume that all the lepton flavor asymmetries are equilibrated.

Section 4.3 Implications for the R-Parity Violation

In the last section Sec. 4.2, we showed that, under the large slepton mixing angles which satisfy

at least two of Eqs. (4.19)–(4.21), all the lepton flavor asymmetries are equilibrated, i.e.,

L1 = L2 = L3. (4.42)

Also we have shown just above that such large slepton mixings are expected in a wide class of

SUSY models. Therefore, not only the B-violating coupling but also L-violating ones are expected

to be constrained by the cosmological constraints.

In this section, we discuss the bounds on the R-parity violating couplings, assuming that we

have such large lepton flavor violations.

4.3.1 COSMOLOGICAL BOUNDS ON THE R-PARITY VIOLATION IN THE PRES-
ENCE OF SLEPTON MIXINGS

We assume that at least two of Eqs. (4.19)–(4.21) are satisfied, and hence all B − Li/3 are equili-

brated. Then, in order to avoid the baryon erasure, any of B − Li/3 violating processes should not

become effective before the electroweak phase transition.

We calculate the dilution factor

DB−L =
NB−L(T∗)

NB−L(T � T∗)
(4.43)

as functions of the R-parity violating couplings λi jk, λ′i jk, λ′′i jk, and κi.*4 The corresponding Boltz-

mann equations are shown in Appendix 4.ii.3. The results are shown in Figs. 4.6–4.9. Here, for

simplicity, we have assumed that all sleptons and all squarks have the same masses ml̃ and mq̃,

respectively.

*4 We do not discuss the bounds on the R-parity violating soft terms, for simplicity.



46 Magisterial Thesis / Sho Iwamoto

From the figures, one can see that the couplings should satisfy√∑
i jk

∣∣∣∣λ′′i jk

∣∣∣∣2 . (4–5) ×10−7, (4.44)

√∑
i jk

∣∣∣∣λ′i jk

∣∣∣∣2 . (3–6) ×10−7, (4.45)

√∑
i jk

∣∣∣λi jk

∣∣∣2 . (0.6–1) ×10−6, (4.46)

√∑
i

∣∣∣∣∣κi

µ

∣∣∣∣∣2 . (1–2) ×10−6
( tan β

10

)−1

, (4.47)

for mq̃ ' 200 − 1200GeV and ml̃ ' 100 − 400GeV. (Again, we took the value where the dilution

of the B− L becomes DB−L ' 0.01.) We should note that the bounds on the ŪD̄D̄ coupling λ′′i jk in

Eq. (4.44) apply even without the lepton flavor violation.

These are our cosmological constraints on the R-parity violating couplings. As you can see,

these are much severer than what we obtained in Chap. 2. Also these are very important for

collider phenomenology, which we will discuss in the next chapter.
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Fig. 4.6 The dilution factor DB−L in the presence of an R-parity violating term λ′′ŪiŪ jD̄k

for mq̃ = 600, 200 and 1200 GeV, from the left to the right. We took ml̃ = 100GeV and
mH̃ = 300GeV, but this result is nearly independent of these masses. Other parameters are:
tan β = 10 and T∗ = 100GeV.
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Fig. 4.7 The same as Fig. 4.6 for λ′LiQ jD̄k interaction. Parameters are the same as Fig. 4.6.
ml̃ and mH̃ hardly affect the result again.



48 Magisterial Thesis / Sho Iwamoto

10-7 10-62´10-7 2´10-65´10-8 5´10-7
10-6

10-5

10-4

0.001

0.01

0.1

1

LLE coupling Λ

D
ilu

tio
n

Fa
ct

or
D

B
-

L

Fig. 4.8 The same as Fig. 4.6 for λLiL jĒk interaction. ml̃ = 400, 200 and 100 GeV, from the
left to the right, mq̃ = 600GeV and mH̃ = 300GeV. In this case the result depends on ml̃, and is
almost independent of the other masses.
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Fig. 4.9 The same as Fig. 4.6 in the presence of a bilinear R-parity violating term κiLiHu as a
function of εi := κi/µ. The masses and the other parameters are the same as Fig. 4.6. The result
is nearly independent of ml̃, mH̃ , and the generation index i.
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Appendix 4.i Decay and Inverse Decay in Details

If we have a decay process X → AY in the early universe, then we also have its inverse process

AY → X. This “inverse decay” process usually does not realized because its phase space is very

limited, but if the particles are in a thermal bath, the thermal effects help the process to occur.

The rates are described as

R(X → AY) = nX

〈
ΓX→AY

〉
, R(AY → X) = nAnY

〈
(σv)AY→X

〉
, (4.48)

where n is the number density of the particle, v is the relative velocity between A and Y , and 〈 〉
denotes the thermal average.

Since we have decay and inverse decay, the time evolution of a particle is governed not by the

decay rate, but the “effective decay rate,” which we will define as follows:*5〈〈
X � AY

〉〉
:= R(X → AY) − R(AY → X)

= nX

〈
ΓX→AY

〉
− nAnY

〈
(σv)AY→X

〉
.

(4.49)

In this appendix, we will examine the relation between decay rates and inverse decay rates, and

then obtain the useful expression of the effective decay rate.

◆The rate without thermal effects

At first, we calculate the decay rate and the crosssection of one particle without thermal effects.

The decay rate in the rest frame is described as [17]

Γ0
X→AY =

1
2mX

∫
dΠAdΠY (2π)4δ(4)(kX − kA − kY )

[∑
|M|2

]
D
, (4.50)

whereM is the invariant matrix element of the process, the summation symbol denotes sum over

the final states, and dΠ is the phase space integral which is defined as

dΠ :=
d3 k

(2π)3

1
2E

. (4.51)

In a similar manner, we can write down the crosssection of the inverse decay as

σ0
AY→X =

1
2EA2EY |vA − vY |

∫
dΠX(2π)4δ(4)(kX − kA − kY )

[∑ ∣∣∣M′∣∣∣2]
ID
, (4.52)

but this process does not occur without thermal effects, for the momentum conservation severely

restricts the initial states.

*5 In the next section (App. 4.ii), we will use this effective decay rate in the Boltzmann equation.
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Note that these matrix elements are related as follows:

1
gAgY

[∑
|M|2

]
D
=

1
gX

[∑ ∣∣∣M′∣∣∣2]
ID
, (4.53)

for we shall take the sum over the final states.

◆Momentum distribution and number density

Now let us introduce the temperature. We will consider the situation that all the particles are in a

thermal bath whose temperature is T . Then, the momentum distribution f (k) of each particle is

given by the Maxwell–Boltzman, the Fermi–Dirac or the Bose–Einstein distribution

fMB(k) =
1

e(E−µ)/T , fBE(k) =
1

e(E−µ)/T − 1
, fFD(k) =

1
e(E−µ)/T + 1

, (4.54)

where E is the energy, which is given by
√

m2 + ‖k‖2, and m and µ are the mass and the chemical

potential of the particle, respectively. The number density n of a particle is expressed by its

distribution function f and degree of freedom g as

n = g
∫

d3 k
(2π)3 f (k). (4.55)

◆Statistical effect on final states

To calculate the rates (4.48), we have to take care of one more thing, that is, the statistical effect

on the final states. If a particle decays into a bosonic state, the decay rate is enhanced by the

Bose–Einstein statistics, while if into a fermionic state, it is suppressed by the Fermi–Dirac one.

The decay rate at finite temperature, which includes the final state effect, is given by

ΓX→AY =
1

2EX

∫
dΠAdΠY φAφY (2π)4δ(4)(kX − kA − kY )

[∑
|M|2

]
D
. (4.56)

Here φ is the function of the final state effect, which is defined as

φMB(k) := 1, φBE(k) := 1 + fBE(k), φFD(k) := 1 − fFD(k), (4.57)

or more simply,*6

φ(k) := e(E−µ)/T f (k). (4.58)

We would mention that, when we consider the Bose–Einstein or the Fermi–Dirac distribution,

this thermal decay rate cannot be transformed into that in the rest frame of the decaying particle

because of the final state effects.

*6 Though seems to be non-trivial, these definitions are equivalent.
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Similarly, we can obtain the cross section of the inverse decay at finite temperature as

σAY→X =
1

2EA2EY |vA − vY |

∫
dΠX φX(2π)4δ(4)(kX − kA − kY )

[∑ ∣∣∣M′∣∣∣2]
ID
. (4.59)

◆Calculate and calculate

Now we can calculate the rates (4.48):

R(X → AY)

= nX

〈
ΓX→AY

〉
= gX

∫
d3 kX

(2π)3 fX · ΓX→AY

= gX

∫
dΠXdΠAdΠY ( fXφAφY )(2π)4δ(4)(kX − kA − kY )

[∑
|M|2

]
D
, (4.60)

R(AY → X)

= nAnY

〈
σAY→X · |vA − vY |

〉
= gAgY

∫
dΠAdΠYdΠX( fA fYφX)(2π)4δ(4)(kX − kA − kY )

[∑ ∣∣∣M′∣∣∣2]
ID

= gX

∫
dΠAdΠYdΠX( fA fYφX)(2π)4δ(4)(kX − kA − kY )

[∑
|M|2

]
D

(4.61)

Therefore, the effective decay rate, which is defined as Eq. (4.49), is〈〈
X � AY

〉〉
= gX

∫
dΠAdΠYdΠX( fXφAφY − fA fYφX)

× (2π)4δ(4)(kX − kA − kY )
[∑
|M|2

]
D

= gX

∫
dΠAdΠYdΠX · fX fA fY · eEX/T

[
e−(µA+µY )/T − e−µX/T

]
× (2π)4δ(4)(kX − kA − kY )

[∑
|M|2

]
D
. (4.62)

From this result, we can see that this process works to reduce the imbalance between µA + µY

and µX , and finally achieves the equilibrium to satisfy the equality µX = µA + µY . Note that this

fact holds regardless of the statistics and the degree of freedom of the particles.

◆Maxwell–Boltzmann approximation

Generally, these event rates are very difficult to transform into some useful expressions analyti-

cally. However, if we approximate the statistics of X, A and Y to the Maxwell–Boltzmann type, it
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can be expressed as∫
dΠAdΠYdΠX · fX fA fY · eEX/T (2π)4δ(4)(kX − kA − kY )

[∑
|M|2

]
D

≈ e(µX+µA+µY )/T
∫

dΠAdΠYdΠXe−EX/T (2π)4δ(4)(kX − kA − kY )
[∑
|M|2

]
D

= e(µX+µA+µY )/T
∫

dΠXe−EX/T · 2mXΓ
0
X→AY

= e(µX+µA+µY )/T T 3

2π2 F1

(mX

T

)
Γ0

X→AY , (4.63)

where Fi(x) is defined as
Fi(x) := x2Ki(x) (4.64)

through the modified Bessel function of the second kind Ki(x). Thus

〈〈
X � AY

〉〉
= gX

[
eµX/T − e(µA+µY )/T

] T 3

2π2 F1

(mX

T

)
Γ0

X→AY . (4.65)

We will use this result in the next section.

Appendix 4.ii Boltzmann Equations

In the section, we will derive the Boltzmann equations which are used in this chapter, that is,

Eq. (4.14), etc.

4.II.1 BOLTZMANN EQUATION

The time evolution of the number density nA of a certain particle A obeys the Boltzmann equation.

In the (expanding) universe, it is described as

d
dt

nA + 3HnA = (Interacting terms), (4.66)

where H is the Hubble parameter.

This equation (4.66) can be easily obtained: the Hubble parameter is defined by the
scale of universe a as

H =
ȧ
a
, (4.67)

where the dot denotes the time derivative. Therefore, we can write down the equation

d
dt

(
na3

)
= ∆

(
the number of the particle

)
= a3∆n. (4.68)

This is equivalent to the equation.
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When we consider only the part of the time evolution induced by a process X � AY , that is,

the decay of some particle X and its inverse process, we can write down the Boltzmann equation

with the effective decay rate, which we have defined in the last section, as

d
dt

nA + 3HnA

∣∣∣∣∣
X�AY

= nX

〈
ΓX→AY

〉
− nAnY

〈
(σv)AY→X

〉
=

〈〈
X � AY

〉〉
.

(4.69)

Here we assume that X, A, and Y are all in a thermal bath, and discuss the effect of (very weak)

X � AY process. Using the “yield” N := n/T 3 as a variable, Eq. (4.69) becomes*7

T
d

dT
NA

∣∣∣∣∣
X�AY

= − 1
HT 3

〈〈
X � AY

〉〉
. (4.70)

We have obtained the analytical expression of this effective decay rate in the previous section,

under the approximation that all the particles obey the Maxwell–Boltzmann distribution. Here

also we use the approximation, and use the result〈〈
X � AY

〉〉
= gX

[
eµX/T − e(µA+µY )/T

] T 3

2π2 F1

(mX

T

)
Γ0

X→AY . (4.71)

Moreover, as the chemical potential µĀ of the antiparticle is equal to −µA, the effective rate of

the processes of antiparticles are〈〈
X̄ � Ā Ȳ

〉〉
= gX

[
e−µX/T − e−(µA+µY )/T

] T 3

2π2 F1

(mX

T

)
Γ0

X→AY , (4.72)

and therefore

T
d

dT
(
NA − NĀ

)∣∣∣∣∣
X�AY

= − 1
HT 3

[〈〈
X � AY

〉〉
−

〈〈
X̄ � Ā Ȳ

〉〉]
(4.73)

= −gX

π2

Γ0
X→AY

H
F1

(mX

T

) [
sinh

(
µX

T

)
− sinh

(
µA + µY

T

)]
. (4.74)

4.II.2 LEPTON FLAVOR VIOLATION

Here, we derive the Boltzmann equation for the LFV process in the early universe. As an example,

we consider as LFV processes those induced by the following term in the superpotential:

W ⊃ h23L2Ē3Hd . (4.75)

For simplicity, we discuss only the decays and inverse decays of the higgsinos H̃, and assume that

all sleptons have the same mass ml̃ (< mH̃).

*7 We have used dT/dt = −HT , assuming for simplicity that the effective degrees of freedom g∗s(T ) are constant.
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We define the asymmetry N[A] of a supermultiplet as, e.g. for µL,

N[µL] :=
(
NµL − Nµ†L

)
+

(
Nµ̃L − Nµ̃∗L

)
. (4.76)

Since leptons are massless before the electroweak phase transition, the asymmetry is

N[µL] =
gµ̃L

2π2 F2

(ml̃

T

) [
exp

(µL2

T

)
− exp

(−µL2

T

)]
+

2gµL

2π2

[
exp

(µL2

T

)
− exp

(−µL2

T

)]
=

1
π2 geff

(ml̃

T

)
sinh

(µL2

T

)
, (4.77)

as we have discussed in Sec. 3.1.3.*8 Also its time evolution induced by LFV processes is de-

scribed as

T
d

dT
N[µL]

∣∣∣∣∣
LFV
= − 1

HT 3

[〈〈
H̃0 � µLτ̃

∗
R

〉〉
+

〈〈
H̃0 � µ̃Lτ

†
R

〉〉
−(their antiparticles’ processes)

]
(4.78)

= −2 · 2
π2

Γ

H
F1

(mH̃

T

) [
sinh

(
−µHd

T

)
− sinh

(µL2 + µĒ3

T

)]
, (4.79)

where

Γ :=
|h23|2
32π

mH̃

1 − ml̃
2

m2
H̃

2

(4.80)

is the partial decay rate of each process, which is the same for all four processes. Similarly,

T
d

dT
N[νµ]

∣∣∣∣∣
LFV
= −2 · 2

π2

Γ

H
F1

(mH̃

T

) [
sinh

(
−µHd

T

)
− sinh

(µL2 + µĒ3

T

)]
, (4.81)

T
d

dT
N[τR]

∣∣∣∣∣
LFV
= −4 · 2

π2

Γ

H
F1

(mH̃

T

) [
sinh

(µHd

T

)
− sinh

(−µL2 − µĒ3

T

)]
. (4.82)

Now let us consider the asymmetry of each lepton flavor, which is defined as, for example,

N2 := N[µL] + N[µR] + N[νµ]

'
geff

(
ml̃/T

)
π2

2µLi − µĒi

T
.

(4.83)

Under the LFV interaction L2Ē3Hd, the time evolution of the difference N2 − N3 is given by

T
d

dT
(
N2 − N3

)
=

d
dT

(
N[µL] + N[νµ] − N[τR]

)
(4.84)

=
16
π2

Γ

H
F1

(mH̃

T

) [
sinh

(µHd

T

)
+ sinh

(µL2 + µĒ3

T

)]
(4.85)

' 16
π2

Γ

H
F1

(mH̃

T

) [µHd + µL2 + µĒ3

T

]
, (4.86)

*8 geff (x) := F2(x) + 2, which is the same as Sec. 3.1.3.
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where we have used µ � T . On the other hand, reactions mediated by the diagonal lepton 湯

川 couplings are in thermal equilibria for T . 105GeV, which leads to

µLi + µĒi
+ µHd = 0 , (4.87)

and hence

T
d

dT
(
N2 − N3

) ' 16
π2

Γ

H
F1

(mH̃

T

) [ (2µL2 − µĒ2
) − (2µL3 − µĒ3

)
3T

]
. (4.88)

Therefore, from Eq. (4.83) we obtain

T
d

dT
(
N2 − N3

)
=

16Γ
3H

F1

(
mH̃/T

)
geff

(
ml̃/T

) (N2 − N3) . (4.89)

4.II.3 R-PARITY VIOLATION

The evolution of the B − L asymmetry under the R-parity violating interactions can be discussed

in the way similar to Sec. 4.ii.2. In this section, we will derive the time evolution of the B − L

asymmetry under R-parity violating interactions.

◆B − L asymmetry and chemical potentials

We define the B − L asymmetry as

NB−L :=
nbaryon − nlepton

T 3 . (4.90)

Using the approximation that µ � T , we can calculate this as

NB−L =
1
3

(
N[Q] − N[Ū] − N[D̄]

)
−

∑
i

(
N[Li] − N[Ēi]

)
≈
geff

(
mq̃/T

)
π2

6µQ − 3µŪ − 3µD̄

T
−
geff

(
ml̃/T

)
π2

∑(
2µLi − µĒi

)
T

=
geff

(
mq̃/T

)
π2

−4µL

T
−
geff

(
ml̃/T

)
π2

9µL + 3µHd

T

= − 1
π2 CB−L(T )

µL

T
,

(4.91)

where
CB−L(T ) := 4geff

(mq̃

T

)
+

(
9 − 3CHd (T )

)
geff

(ml̃

T

)
. (4.92)

For the definitions of N[X], µL, and CHd (T ), please go back to P. 39, Eq. (3.38) and Eq. (3.40),

respectively.
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◆ŪD̄D̄ interaction

If in the superpotential we have ŪiD̄ jD̄k term, we have the following 18 (= 3 × color) decay

processes,

ũ∗i → d jdk, d̃∗j → uidk, d̃∗k → uid j, (4.93)

and their antiparticles’ processes. They are all governed by the same decay rate

ΓŪiD̄ jD̄k
=

1
16π
|λ′′i jk |2mq̃, (4.94)

for now quarks are still massless, and we assume that the mass of squarks are the same.

Therefore, in the presence of the superpotential

W =
1
2
λ′′i jkŪiD̄ jD̄k, (4.95)

the time evolution of NB−L is given by

T
d

dT
(NB−L) ' − 1

π2 ·
9
∑

i jk ΓŪiD̄ jD̄k

H
F1

(mq̃

T

)
µŪ + 2µD̄

T
(4.96)

=
9
H

∑
i jk

ΓŪiD̄ jD̄k
F1

(mq̃

T

) 1 + CHd (T )
CB−L(T )

· NB−L. (4.97)

We should emphasize that Eq. (4.97) holds even in the absence of the lepton flavor violation.

◆LLĒ interaction

Here we assume that the lepton flavor asymmetries vanish because of the lepton flavor violation,

that is, we use µL1 = µL2 = µL3 in addition to Eq. (4.91). Under this assumption, the time evolution

of NB−L under the superpotential

W =
1
2
λi jkLiL jĒk (4.98)

is described as

T
d

dT
NB−L ' −

1
π2

3
∑

i jk ΓLiL j Ēk

H
F1

(ml̃

T

) 2µL + µĒ

T
(4.99)

=
3
H

∑
i jk

ΓLiL j Ēk
F1

(ml̃

T

) 1 + CHd (T )
CB−L(T )

· NB−L , (4.100)

where
ΓLiL j Ēk

=
1

16π
|λi jk |2m˜̀. (4.101)
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◆LQD̄ interaction

Here also we assume the vanishment of lepton flavor asymmetries. The time evolution of NB−L

under the superpotential
W = λ′i jkLiQ jD̄k (4.102)

is

T
d

dT
NB−L ' −

1
π2

12
∑

i jk Γq̃:LiQ jD̄k

H
F1

(mq̃

T

)
+

6
∑

i jk Γ˜̀:LiQ jD̄k

H
F1

(ml̃

T

) µL + µQ + µD̄

T

=
1
H

∑
i jk

[
1Γq̃:LiQ jD̄k

F1

(mq̃

T

)
+ 6Γ˜̀:LiQ jD̄k

F1

(ml̃

T

)] 1 + CHd (T )
CB−L(T )

NB−L , (4.103)

where

Γq̃:LiQ jD̄k
=

1
16π
|λ′i jk |2mq̃, Γ˜̀:LiQ jD̄k

=
1

16π
|λ′i jk |2m˜̀. (4.104)

◆Bilinear R-parity violation

As we will discuss in App. B.i, or as we have done in Sec. 2.2, the bilinear R-parity violating term

κiLiHu induces, through the Li–Hd mixings, effective trilinear couplings λi jk and λ′i jk. Then, the

time evolution of B − L can be discussed by using the Boltzmann equations of the LLĒ and the

LQD̄ cases, which we have just discussed.
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Chapter 5

Conclusion

Now let us conclude this thesis.

* * *

We have seen that

• the R-parity is not necessary for the MSSM,

• the R-parity violating parameters are constrained,

• the constraints is mainly obtained from collider experiments,

• cosmology would bring us to much severe constraints if the lepton flavor is violated

enough,

in this thesis. Here, we will discuss the application of the last severe constraints, which we have

obtained from cosmology, to the detection of the “SUSY without R-parity” in colliders (LHC,

etc.), and present the outlook for the future.

* * *

In the presence of slepton mixings, all the R-parity violating couplings must satisfy Eqs. (4.44)–

(4.47) in order to avoid the baryon erasure. Interestingly, this means that the LSP has a long decay

length at the LHC. For instance, suppose that the LSP is the stau τ̃, mainly consisting of the right-

handed one τ̃R. If the LLĒ couplings λi j3 meet the cosmological bounds (4.46), the decay length

of τ̃ becomes

cττ̃ ∼ 50µm
(
λi j3

10−6

)−2 ( mτ̃

100GeV

)−1
. (5.1)

This is comparable to the tau-lepton decay length (cττ ' 87µm), which can be probed at the LHC.

To our pleasure, this is the shortest possible decay length, and in general we can expect a much

longer one. For example, if the dominant decay of τ̃ is caused by λi jk (k , 3) or the LQD̄ coupling

λ′i jk, the decay length becomes longer since the decay rate is suppressed by the left-right mixing
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of τ̃ and/or the flavor mixing.

Also, for other LSP cases, we can obtain similar results. The dominant decay mode of the LSP

is dependent to a great extent on what the LSP is and the pattern of the R-parity breaking. If it is

three- or four-body decay [11], the decay length becomes even much longer.

These features may be a great help for us to detect R-parity violating SUSY models, and there-

fore now, in the LHC era, it is important to study the LHC phenomenology of R-parity violating

SUSY models under the cosmological bounds Eqs. (4.44)–(4.47). We should examine various

LSP candidates and various patterns of the R-parity violating couplings, and we leave it for future

works.
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Appendix A

Standard Model

Section A.1 Notations in this Appendix

In this part of the thesis, we use following conventions.

All fermionic fields are expressed as Dirac spinors. Dirac’s gamma matrices, which shall satisfy

{γµ, γν} = 2ηµν; {γµ, γ5} = 0, (γ5)2 = 1 (A.1)

are defined as “chiral notation” like Peskin [17], that is,

γµ :=
(

0 σµ

σ̄µ 0

)
; γ5 = −

i
4!
εµνρσγ

µγνγργσ = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, (A.2)

where σµ and σ̄µ are extended Pauli matrices and εµνρσ is the totally antisymmetric Lorentz tensor:

σµ = (1, σi), σ̄µ = (1,−σi); ε0123 = −ε0123 = 1. (A.3)

As we use Dirac spinors, not Weyl spinors, projection operators appear explicitly in the La-

grangian. They are defined as

PL :=
1 − γ5

2
, PR :=

1 + γ5

2
. (A.4)

For the gauge group of the Standard Model, we use following notations as their representation.

τα denotes Gell-Mann matrices, and T a is equal to σa/2, where σa is Pauli matrices. That is,

SU(3)strong :
[
τa, τb

]
= i f abcτc, Tr

(
τaτb

)
=

1
2
δab,

SU(2)weak :
[
T a,T b

]
= iεabcT c, Tr

(
T aT b

)
=

1
2
δab,
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Section A.2 Standard Model

The Standard Model is one of the greatest achievement of science in the last century. It describes

almost all physics below O(100GeV), the electroweak scale.

In this section, we introduce the Lagrangian of the Standard Model, discuss its spontaneous

symmetry breaking from SU(2)weak × U(1)Y to U(1)EM (the Higgs mechanism), and write down

the Lagrangian after the symmetry breaking.

A.2.1 FIRST LAGRANGIAN

The Standard Model is characterized by its gauge group and field content. The gauge group is

SU(3)strong × SU(2)weak × U(1)Y , and the field content is as Table A.1. From these two features,

we can specify the model and write down the (renormalizable) Lagrangian of the Standard Model

as follows:

L = Lgauge +LHiggs +Lmatter +L湯川, (A.5)

where Lgauge = −
1
4

BµνBµν −
1
4

WaµνWa
µν −

1
4

GaµνGa
µν (A.6)

LHiggs =

∣∣∣∣∣∣
(
∂µ − ig2Wµ −

1
2

ig1Bµ

)
H

∣∣∣∣∣∣2 − V(H), (A.7)

Lmatter = Qiiγ
µ

(
∂µ − ig3Gµ − ig2Wµ −

1
6

ig1Bµ

)
PLQi

+ U iiγµ
(
∂µ − ig3Gµ −

2
3

ig1Bµ

)
PRUi

+ Diiγµ
(
∂µ − ig3Gµ +

1
3

ig1Bµ

)
PRDi

+ Liiγµ
(
∂µ − ig2Wµ +

1
2

ig1Bµ

)
PLLi

+ Eiiγµ
(
∂µ + ig1Bµ

)
PREi,

(A.8)

L湯川 = − U i(yu)i jHPLQ j + Di(yd)i jH†PLQ j + Ei(ye)i jH†PLL j + H. c. (A.9)

Here, V(H) is the Higgs potential, which we will discuss later. Also note that the field strengths

are defined as, e.g. for SU(2) gauge fields,

Wa
µν := ∂µWa

ν − ∂νWa
µ + gε

abcWb
µWc

ν , (A.10)

or with a notation W := WaT a,

Wµν := ∂µWν − ∂νWµ − ig
[
Wµ,Wν

]
. (A.11)
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Table A.1 The field content of the Standard Model: here we omit the gauge indices, and
subscripts i denote “generation indices”, which run 1–3.

SU(3)strong SU(2)weak U(1)Y

Matter Fields (Fermionic / Lorentz Spinor)

Qi : Left-handed quarks 3 2 1/6

Ui : Right-handed up-type quarks 3 1 2/3

Di : Right-handed down-type quarks 3 1 −1/3

Li : Left-handed leptons 1 2 −1/2

Ei : Right-handed leptons 1 1 −1

Higgs Field (Bosonic / Lorentz Scalar)

H : Higgs 1 2 1/2

Gauge Fields (Bosonic / Lorentz Vector)

G : Gluons 8 1 0

W : Weak bosons 1 3 0

B : B boson 1 1 0

○ ○ ○

A.2.2 HIGGS MECHANISM

In the above discussion we did not write down the explicit form of the Higgs potential. Now let

us discuss the Higgs sector.

The (renormalizable) Higgs potential must be, in order not to violate the gauge symmetry, as

follows:
V(H) = −µ2(H†H) + λ

(
H†H

)2
. (A.12)

Here µ2 and λ are arbitrary real parameters, and λ > 0 in order not to run away the vacuum

expectation values (VEVs) of the Higgs. Note that this µ is the only parameter which has non-

zero mass dimension in the Standard Model.

If µ2 were negative, the potential has a minimum at |H| = 0, and everything would be as it was.

However we set µ2 > 0 here. Then the potential has minima at |H|2 = µ2/2λ, which means the

Higgs fields have non-zero VEVs, and the symmetry SU(2)weak × U(1)Y is broken.

To discuss this clearly, let us redefine the Higgs field so that the VEV is

〈H〉 = 1
√

2

(
0
v

)
, where v =

√
µ2

λ
, (A.13)
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and parameterize fluctuations around the VEV as

H =
1
√

2

(
φ1 + iφ2

v + (h + iφ3)

)
. (A.14)

Here h and φi are real scalar fields. h is known as “Higgs boson,” and φi are 南部–Goldstone

bosons according to the symmetry breaking, which the weak bosons “eat” to be massive.

The Higgs potential becomes

V(h) =
µ2

4v2 h4 +
µ2

v
h3 + µ2h2, (A.15)

and now we know the Higgs boson has acquired mass mh =
√

2µ.

Accordingly, the kinetic term of the Higgs fields in LHiggs turns into∣∣∣∣∣∣
(
∂µ − ig2Wµ −

1
2

ig1Bµ

)
H

∣∣∣∣∣∣2 = 1
2

(∂µh)2 +
(v + h)2

8

[
g2

2W1
2 + g2

2W2
2 + (g1B − g2W3)2

]
. (A.16)

Thus, we redefine the gauge fields with taking care of the norm of fields as follows:

W±µ :=
1
√

2
(W1

µ ∓ iW2
µ),

(
Zµ
Aµ

)
:=

(
cos θw − sin θw
sin θw cos θw

) (
W3
µ

Bµ

)
, (A.17)

where θw is the Weinberg angle, and e is the elementary electric charge, defined as

tan θw :=
g1

g2
, e := − g1g2√

g1
2 + g2

2
; g1 =

|e|
cos θw

, g2 =
|e|

sin θw
. (A.18)

We obtain the following terms in LHiggs:

LHiggs ⊃
1
2

(∂µh)2 +
(v + h)2

8

[
2g2

2W+µW−µ + (g1
2 + g2

2)Z2
]
. (A.19)

Here we have omitted the南部–Goldstone bosons.

Here we present another form:

g1Bµ = |e|Aµ − tan θwZµ, (A.20)

g2Wµ =
g2√

2

(
W+

µ T+ +W−
µ T−

)
+

(
|e|

tan θw
Zµ + |e|Aµ

)
T 3, (A.21)

where Wµ := Wa
µT a as is already defined, and T± = T 1 ± iT 2.

Note that the gauge bosons acquired the following masses:

mA = 0, mW =
g2

2
v, mZ =

√
g1

2 + g2
2

2
v. (A.22)
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A.2.3 MASS OF FERMIONS

Now let us move on to the 湯川 terms. The 湯川 interaction is, we writing down SU(2)- and

generation-indices,

L湯川 = −εαβU i(yu)i jHαPLQβ
j + Di(yd)i j

(
H†

)α
PLQα

j + Ei(ye)i j

(
H†

)α
PLLαj + H. c.

⊃ 1
√

2
(v + h)

[
(yu)i jU iPLQ1

j + (yd)i jDiPLQ2
j + (ye)i jEiPLL2

j + H. c.
]
. (A.23)

We can see that these terms give masses to the fermions, and invoke fermion–fermion–Higgs

interactions. However, the湯川 matrices are not diagonal. Here we will diagonalize the matrices

to obtain mass eigenstates.

We use the singular value decomposition method to mass matrices Y• := vy•/
√

2. Generally,

any matrices can be transformed with two unitary matrices Ψ and Φ as

Y = Φ†

m1 0 0
0 m2 0
0 0 m3

Ψ =: Φ†MΨ (mi ≥ 0). (A.24)

Using this Ψ and Φ, we can rotate the basis as

Q1 7→ Ψ†uQ1, Q2 7→ Ψ†dQ2, L 7→ Ψ†e L, U 7→ Φ†uU, D 7→ Φ†dD, E 7→ Φ†e E (A.25)

to obtain mass eigenstates*1

Then the湯川 terms are

L湯川 =
(
1 +

1
v

h
) [

(mu)iU iPLQ1
i + (md)iDiPLQ2

i + (me)iEiPLL2
i + H. c.

]
. (A.26)

in mass eigenstates.

In the transformation from the gauge eigenstates to the mass eigenstates, almost all the terms

in the Lagrangian are not modified. However, only the terms of quark–quark–W interactions do

change drastically, as

L ⊃ Qiγµ
(
−ig2Wµ −

1
6

ig1Bµ

)
PLQ (A.27)

= Q
g2√

2

(
/W+T+ + /W−T−

)
PLQ + (interaction terms with Z and A) (A.28)

7→ g2√
2

(
Q

1
Ψu Q

2
Ψd

) ( 0 /W+

/W− 0

)
PL

(
Ψ
†
uQ1

Ψ
†
dQ2

)
+ ( · · · ) (A.29)

=
g2√

2

[
Q

2
/W−XPLQ1 + Q

1
/W+X†PLQ2

]
+ ( · · · ), (A.30)

*1 FYI: The fields in the left hand sides of (A.25) are in gauge eigenstates, as well as those in all the equations before
(A.25). Meanwhile, in the right hand sides are in mass eigenstates.
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where X := ΨdΨ
†
u is a matrix, so-called the Cabibbo–小林–益川 (CKM) matrix, which is not

diagonal, and not real, generally. These terms violate the flavor symmetry of quarks, and even the

CP-symmetry.

In our notation, CP-transformation of a spinor is described as

C P (ψ) = −iη∗(ψγ2)T, C P
(
ψ
)
= iη(γ2ψ)T, (A.31)

where η is a complex phase (|η| = 1). Under this transformation, those terms are trans-
formed as, e.g.,

C P
(
Q

2
/W−XPLQ1

)
= (γ2Q2)TP(− /W+)XPL(Q

1
γ2)T

= −W+
µ

P(γ2Q2)T(Q
1
XTγ2PLγ

µT)T (A.32)

= (Q
1
/W+XTPLQ2).

Therefore, we can see that the CP-symmetry is maintained if and only if XT
= X†, that is,

if and only if X is a real matrix.

A.2.4 FULL LAGRANGIAN AFTER THE SYMMETRY BREAKING

After all, we obtain the following Lagrangian.

L = Lg.-int. +Lg.-mass +LHiggs +Lmatter(1) +Lmatter(2) +L湯川; (A.33)
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Lg.-int. := −1
4

[
GaµνGa

µν + (∂Z)µν(∂Z)µν + (∂A)µν(∂A)µν + 2(∂W+)µν(∂W−)µν
]

+
i|e|

tan θw

[
(∂W+)µνW−µ Zν + (∂W−)µνZµW+ν + (∂Z)µνW+µ W−ν

]
+ i|e|

[
(∂W+)µνW−µ Aν + (∂W−)µνAµW+ν + (∂A)µνW+µ W−ν

]
+ (ηµνηρσ − ηµρηνσ)

[
|e|2

2 sin2 θw
W+µ W+ν W−ρ W−σ +

|e|2
tan2 θw

W+µ ZνW−ρ Zσ

+
|e|2

tan θw

(
W+µ ZνW−ρ Aσ +W+µ AνW−ρ Zσ

)
+ |e|2W+µ AνW−ρ Aσ

]
,

Lg.-mass := mW
2W+µW−µ +

mZ
2

2
ZµZµ,

LHiggs :=
1
2

(∂µh)2 − mh
2

8v2 h4 − mh
2

2v
h3 − 1

2
mh

2h2

+
2mW

2

v
W+W−h +

mZ
2

v
Z2h +

mW
2

v2 W+W−h2 +
mZ

2

2v2 Z2h2

+

(
(mu)i

v
U iPLQ1

i h +
(md)i

v
DiPLQ2

i h +
(me)i

v
EiPLL2

i h + H. c.
)
,

Lmatter(1) := Q
(
i/∂ + g3 /G

)
PLQ + U

(
i/∂ + g3 /G

)
PRU + D

(
i/∂ + g3 /G

)
PRD

+ L
(
i/∂

)
PLL + E

(
i/∂

)
PRE,

Lmatter(2) :=
g2√

2

[
Q

2
/W−XPLQ1 + Q

1
/W+X†PLQ2

]
+ L

g2√
2

(
/W+T+ + /W−T−

)
PLL

+ |e| · Q
[(

T 3 +
1
6

)
/A +

(
T 3

tan θw
− tan θw

6

)
/Z0

]
PLQ

+
2
3
|e| · U (

/A − /Z tan θw
)

PRU

− 1
3
|e| · D (

/A − /Z tan θw
)

PRD

+ |e| · L
[(

T 3 − 1
2

)
/A +

(
T 3

tan θw
+

tan θw

2

)
/Z0

]
PLL

− |e| · E (
/A − /Ztan θw

)
PRE,

L湯川 := (mu)iU iPLQ1
i + (md)iDiPLQ2

i + (me)iEiPLL2
i + H. c.

We have used an abridged notation

(∂X)µν := ∂µXν − ∂νXµ. (A.34)
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A.2.5 VALUES OF SM PARAMETERS

Here we present the experimental values of the Standard Model, taken from the “Review of Parti-

cle Physics” [7].

■Parameters in low energy

αEM = 1/137.035999679(94) GF = 1.166367(5) ×10−5GeV−2

■In the electroweak scale

These values are all in MS scheme.

α−1
EM(mZ) = 127.925(16) mW (mW ) = 80.398(25)GeV

α−1
EM(mτ) = 133.452(16) mZ(mZ) = 91.1876(21)GeV

αs(mZ) = 0.1176(20) sin2 θW(mZ) = 0.23119(14)

■Mass of fundamental particles

These are PDG value. Here we ignore the renormalization effects.

e : 0.510998910(13)MeV u : 1.5 to 3.3MeV d : 3.5 to 6.0MeV

µ : 105.658367(4)MeV c : 1.27+0.07
−0.11GeV s : 104+26

−34MeV

τ : 1.77784(17)GeV t : 171.2±2.1GeV b : 4.20+0.17
−0.07GeV

■Estimation of Standard Model parameters

For the electroweak scale, we can roughly estimate the values as

e ∼ 0.313, g1 ∼ 0.358, g2 ∼ 0.651; v =

√
µ2

λ
∼ 246GeV

Therefore湯川 matrices are (after diagonalization)

yu ≈

10−5 0 0
0 0.007 0
0 0 0.98

 , yd ≈

3 × 10−5 0 0
0 0.0006 0
0 0 0.02

 ,
ye ≈

3 × 10−6 0 0
0 0.0006 0
0 0 0.01

 .
Also, for mh ∼ 120GeV, we can estimate the parameters of the Higgs potential as µ ∼ 85GeV and

λ ∼ 0.12.
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Appendix B

SUSY

Section B.1 MSSM

B.1.1 GAUGE GROUP AND FIELD CONTENT

The minimal supersymmetric standard model (MSSM) [4, 5, 6] is the minimal supersymmetric

extension of the Standard Model. Its gauge group is

SU(3)color × SU(2)weak × U(1)Y , (B.1)

which is the same as the Standard Model,

The field content is as Table B.1. Note that we need two Higgs fields Hu and Hd to describe

the 湯川 interactions, which is also good since we have no gauge anomaly with the two Higgs

doublets.

This field content leads us to the following (general) superpotential of the MSSM as

W = µHuHd + (yu)i j HuQiŪ j + (yd)i j HdQiD̄ j + (ye)i j HdLiĒ j

+ κiHuLi +
1
2
λi jkLiL jĒk + λ

′
i jkLiQ jD̄k +

1
2
λ′′i jkŪiD̄ jD̄k.

(B.2)

Note that the terms in the second line of Eq. (B.2) violate the baryon number B or the lepton

number L, while those in the first line do not. These B- or L-violating terms cause the proton

decay problem, and thus we usually impose the conservation of the R-parity [6]. These matters

are discussed in Sec. 2.1.

We use the convention that λi jk = −λ jik and λ′′i jk = −λ′′ik j, for the superpotential (B.2)
has the following asymmetry:

LiL jĒk = −L jLiĒk, ŪiD̄ jD̄k = −ŪiD̄kD̄ j. (B.3)
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B.1.2 SUSY BREAKING TERMS

From the field content and the superpotential, we can write down the Lagrangian of the MSSM*1,

which respects the supersymmetry. However, this Lagrangian is not what governs our current

universe, because we know the universe is not supersymmetric. We have electron, whose mass

is 0.511eV, but do not have such light bosons. (If the universe were supersymmetric, we had

0.511eV bosons.)

Thus we consider the supersymmetry is already broken so that the mass of superpartners be-

comes much heavier. In these twenty years, various models are proposed to achieve this feature,

the SUSY-breaking (»»»SUSY). To discuss such models is a very interesting theme, but in this thesis

we do not focus on it. Instead, we give the general form of the »»»SUSY effects, which appears in

○ ○ ○

Table B.1 The field content of the MSSM: here we omit the gauge indices, and subscripts i
denote “generation indices”, which run 1–3.

Matter and Higgs fields (chiral multiplet)

SU(3) SU(2) U(1) spin 0 spin 1/2

Qi 3 2 1/6 (̃uL, d̃L) (uL, dL)

Ūi 3̄ 1 −2/3 ũ∗R u†R

D̄i 3̄ 1 1/3 d̃∗R d†R

Li 1 2 −1/2 (̃ν, ẽL) (ν, eL)

Ēi 1 1 1 ẽ∗R e†R

Hu 1 2 1/2 (H+u ,H
0
u) (H̃+u , H̃0

u)

Hd 1 2 −1/2 (H0
d ,H

−
d ) (H̃0

d , H̃
−
d )

Gauge fields (vector multiplet)

SU(3) SU(2) U(1) spin 1/2 spin 1

G 8 1 0 g̃ g

W 1 3 0 W̃ W

B 1 1 0 B̃ B

*1 We do not present the procedure here, for it is a bit long travel. If you want to follow the way, see Ref. [36,
Secs.3–7], etc.
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the Lagrangian.

The general form of »»»SUSY terms is

L»»SUSY = −
1
2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + H. c.

)
−

[
(au)i jHuQ̃ĩū j − (ad)i jHdQ̃i

˜̄d j − (ae)i jHdL̃ĩē j + H. c.
]

−
[(

m2
Q

)
i j

Q̃∗i Q̃ j +
(
m2

L

)
i j

L̃∗i L̃ j +
(
m2

Ū

)
i j
˜̄u∗i ˜̄u j +

(
m2

D̄

)
i j
˜̄d∗i ˜̄d j +

(
m2

Ē

)
i j
˜̄e∗i ˜̄e j

]
−

[
m2

Hu
H∗uHu + m2

Hd
H∗dHd + (bHuHd + H. c.)

]
−

[
1
2
ξi jk L̃iL̃ j̃ēk + ξ

′
i jk L̃iQ̃ j

˜̄dk +
1
2
ξ′′i jk

˜̄ui
˜̄d j

˜̄dk + βiHuL̃i + H. c.
]
.

(B.4)

Here, i, j are indices for the generations, which run 1–3, and we omit the gauge indices. Note that

the terms of the last line, ξ’s terms and β term, also violate the B- or L-number, and are usually

omitted by imposing the R-parity conservation.

We have the following »»»SUSY parameters:

• Mi : gaugino masses.

• a• : trilinear scalar couplings.

• m2
• : scalar masses, which must be Hermitian.

• b : Higgs off-diagonal mass, which is assumed to be real.

• ξ : B- or L-violating trilinear scalar couplings.

• β : L-violating bilinear scalar couplings.

Here we also use the convention

ξi jk = −ξ jik, ξ′′i jk = −ξ′′ik j. (B.5)

Section B.2 Proton Decay and R-Parity

Now we have introduced the MSSM, but with the B- and L-violating terms left. As we discussed

in Sec. 2.1, these terms induce the proton decay problem, and usually omitted by imposing the

R-parity.

However, as is also already mentioned, we overlooked the fact that we have to consider not

only 4-dimensional operators but also higher-dimensional operators in order to realize the current

bounds of the proton lifetime. In this section we will discuss this matter, and introduce a better

symmetry, the proton hexality.
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B.2.1 HIGHER DIMENSIONAL OPERATORS AND PROTON DECAY

We considered the 4-dimensional operators in the MSSM in Sec. 2.1, and saw that we can avoid

proton decay with imposing the R-parity conservation. However, we should be more careful. We

must consider 5-dimensional operators too.

Let us assume that we had a 5-dimensional term which invoke proton decay in the Lagrangian.

The term is suppressed by a huge mass, e.g., the scale of the grand unification theories (GUTs)

MGUT = 1016GeV as

L ⊃ k
MGUT

XXXX, (B.6)

where k is the coupling constant. Then the rate of proton decay can be roughly estimated as

Γ .
|k|2

M2
GUT

m3
proton =

|k|2
2.5yr

, (B.7)

therefore still we have to constrain the coupling constant as |k| . 10−15. This constraint is still

not usual, thus we have to eliminate, or at least pay attention to, the effect of 5-dimensional

operators.*2

In the MSSM scheme, there may be the following terms which lay down 5-dimensional opera-

tors:
QQŪD̄, QQQL, QQQHd, ŪŪD̄Ē, QŪLĒ,

QŪHdĒ, LHuHuHd, LLHuHu, HuHuHdHd,
(B.8)

in the superpotential, and the following in the Kähler potential:

D̄†ŪĒ, D̄†QQ, L†QŪ, H†d QŪ,

H†u QD̄, H†u LĒ, H†u HdĒ, L†Hd.
(B.9)

(And their Hermitian conjugates, surely.)

They can be classified as follows:

• Both PB- and PL-violating: QQQL and ŪŪD̄Ē,

• only PB-violating: QQQHd and D̄†QQ,

• only PL-violating: QŪHdĒ, LHuHuHd, D̄†ŪĒ, L†QŪ, H†u HdĒ and L†Hd,

• and neither PB- nor PL-violating ones.

Here, PB := (−1)3B is the baryon parity, and PL := (−1)L is the lepton parity.

*2 To use the Planck scale Mpl instead of MGUT is not a remedy. Also we can see from this discussion that 6-
dimensional operators, which is suppressed by M2

GUT, is not so critical.
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In particular, the four PB-violating terms are critical, because the proton decay owes to them, as

we mentioned in Sec. 2.1. Now we would like to see how the above PB-violating operators invoke

proton decay.

* * *

In the following estimation, we use as the mass scales

MGUT = 1016GeV, mSUSY = 103GeV. (B.10)

◆QQQL and ŪŪD̄Ē terms

The terms QiQ jQkLl and ŪiŪ jD̄kĒl, where i, j, k and l are the generation indices, violate not only

B (PB) but also L (PL). Note that these terms do respect the R-parity, and thus we cannot omit

these terms by imposing the R-parity conservation.

Here, we cannot choose the generation indices arbitrarily for the asymmetry of the gauge in-

dices. For ŪiŪ jD̄kĒl, we have to choose them so that i , j. For QiQ jQkLl, if we select the

SU(2)weak indices (a and b, where a , b) as Qa
i Qb

j Q
a
k Lb

l , we have to satisfy i , k.

Ones of the main channels of the proton decay processes are described in Fig. B.1. The decay

rate can be roughly estimated as

ΓQQQL ∼
∣∣∣∣∣α · k/MGUT

mSUSY

∣∣∣∣∣2 · m5
proton =

|k|2
5.4 ×1010yr

, (B.11)

and the experimental bounds are [7]

τ(p→ K+ν) > 6.7 ×1032yr. (B.12)

○ ○ ○

ν̃

χ̃

s̃L
u

u u

s†L

d ν†
ẽR

ũR

χ̃

u

u u

ūR

d e+R

Fig. B.1 Channels of the proton decay induced by QQQL (left) and ŪŪD̄Ē (right) terms. The
starF in the ŪŪD̄Ē case denotes the CKM mixing, which we have to use to convert from the
charm quark to the up quark. χ̃ denotes the neutralinos.
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Thus we need an unnatural constraint, |k| . 10−11, for the QQQL coupling. For the ŪŪD̄Ē

coupling the constraint is a bit relaxed because of the CKM mixing, but still unnatural.

Therefore, it is favorable to introduce a symmetry to forbid these terms.

* * *

These 5-dimensional operators are, since they are naturally present in SU(5) GUTs, well stud-

ied. The decay rate for QQQL is more precisely calculated [37, 38] as

Γ(p→ K+ν†i ) =
(m2

proton − m2
K)2

32πm3
proton f 2

π

∣∣∣∣∣∣βC
(
1 +

mproton

mB
(D + F)

)∣∣∣∣∣∣2 . (B.13)

fπ in this equation is the pion decay constant ≈ 139MeV. C is the coupling constant which is

defined through the 6-dimensional effective operator O(sudν) as

L ⊃ C · O(sudν). (B.14)

β is a parameter related to the hadron matrix element
〈
0
∣∣∣∣∣udd

∣∣∣∣∣proton
〉

which ranges

β = (0.003–0.03)GeV3. (B.15)

The latter part in the big bracket of Eq. (B.13) expresses the effects of the Quantum Chromo

Dynamics in the Standard Model, and in the references D = 0.81 and F = 0.44 are used as the

values. mB is typical light baryon mass ≈ 1150MeV.

Anyway, in our language the coupling constant is

C ∼ k
MGUT

1
mSUSY

, (B.16)

and therefore we obtain

τ =
1.9 ×1013yr

k2 ·
( MGUT

1016GeV
mSUSY

103GeV

)2 (
0.003GeV3

β

)2

, (B.17)

which roughly meets our estimate and yields a constraint |k| . 10−10.

◆QQQHd term

This term QQQHd violates only B, thus we need a source of L-violation. Here, we introduce the

bilinear term HuLi as an example:

W = (µεi)HuLi +
k

MGUT
QQQHd. (B.18)
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As we will explain in Appendix B.i, when the superpotential includes the bilinear term, the

sneutrino obtains a vacuum expectation value (VEV), and the value can be approximated as

〈̃νi〉 '
1
√

2
εiv cos β, (B.19)

Therefore one of the main Feynman diagrams is as Fig. B.2, whose decay rate is

Γ ≈
∣∣∣∣∣∣ α2k
MGUT

· ms

v cos β/
√

2
· εiv cos β
√

2
· 1

mSUSY

∣∣∣∣∣∣2 m3
proton

=

∣∣∣∣∣ α2k
MGUT

· εims ·
1

mSUSY

∣∣∣∣∣2 m3
proton

=
|kεi|2

2.0 ×1011yr

( mSUSY

103GeV

)−2 ( MGUT

1016GeV

)−2

. (B.20)

Here ms is the mass of the strange quark. We can see that the experimental constraint is roughly

|kεi| . 10−11.

The constraint from this term is weaker than those of the previous two interactions because here

we need an L-violating term.

◆D̄†QQ term

The term D̄†QQ is similar to the 4-dimensional ŪD̄D̄ term. One of the processes is as Fig. B.3,

where we use ∫
dθ2dθ̄2 D̄†QQ ⊃

∫
dθ2dθ̄2

(√
2θ̄ψ̄D̄

) (√
2θψQ

) (
iθσµθ̄∂µφQ

)
(B.21)

term, and a LQD̄ term as a source of L-violation. The decay rate is estimated as

Γ ≈
∣∣∣∣∣∣k · mproton

MGUT
λ′

∣∣∣∣∣∣2 m5
proton

m4
SUSY

=
|kλ′|2

3.3 ×1012yr
, (B.22)

while the experimental bounds are [7]

τ(p→ K+ν) > 6.7 ×1032yr, τ(p→ π+ν) > 2.5 ×1031yr. (B.23)

Therefore the constraint is
|kλ′| . 10−10. (B.24)
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H0
d

s̃L

H̃0
d

Z̃

u

u u

s†R

d
ν

〈̃ν〉

Fig. B.2 One of the main channels of the proton decay induced by QQQHd. Here we use the
sneutrino VEV.

d̃L; s̃L

d

u

u

ν

d†; s†

u

Fig. B.3 One of the main channels of the proton decay induced by D̄†QQ. The intermediate
particle in this diagram must be left-handed.
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Section B.3 R-Parity Violation and Other Symmetries

So far, we saw that we have the following B-violating interactions, and they are very harmful to

the proton decay problem:

W ⊃ λ′′ŪŪD̄ +
k1

MGUT
QQQL +

k2

MGUT
ŪŪD̄Ē +

k3

MGUT
QQQHd, (B.25)

K ⊃ k4

MGUT
D̄†QQ. (B.26)

To solve the proton decay problem, usually we impose the R-parity conservation on the MSSM.

However, even if we do so, QQQL and ŪŪD̄Ē terms cannot be omitted. Thus if we want to omit

all these terms, we must find another symmetry.

B.3.1 DISCRETE GAUGE SYMMETRY

Here, we should mention quantum gravitational effects on the symmetries. It is said that any

global symmetries are violated by those effect, for example virtual blackhole exchange and worm-

hole tunneling. Thus all the global symmetries we impose on the MSSM (or other effective theo-

ries) must be a remnant of a gauge symmetry. [39]

Consider a U(1) gauge theory with two scalar fields η and ξ carrying charge Ne and e, respec-

tively, and η is much heavier than ξ. Here, if η is condensed at some high energy scale, that is,

acquires VEV, then its low-energy effective theory is only the theory with ξ, and it respects a

global ZN symmetry ξ 7→ exp(2πi/N)ξ as a consequence of the original gauge invariance. Dis-

crete symmetries of this type are called “discrete gauge symmetries.” Discrete gauge symmetries

are protected from the quantum gravity effects.

However, gauge symmetries must satisfy anomaly cancellation conditions. We can regard a

global symmetry as a discrete gauge symmetry if and only if there is an anomaly-free gauge

symmetry from which the global symmetry is obtained.

Here note that the high energy theory might have another particle whose mass is very heavy

and thus already integrated out. Therefore, the gauge symmetry need not be anomaly-free only

with the low-energy particles. In other words, we can add some heavy particles so that the gauge

symmetry should be anomaly-free.
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For example, the R-parity is anomalous only with the MSSM particles (See: [40,
Sec.22.4]), but adding the right-handed neutrino N̄ makes it anomaly-free. An example
of the anomaly-free charge assignments is as follows.

Q L Ū D̄ Ē Hu Hd N̄
1 −3 −5 3 7 4 −4 −1

Here, though we do not prove, we are free to shift all these values by kY , where k is an
arbitral coefficient and Y is the hypercharge of the particle.

Ibáñez and Ross studied this “discrete gauge anomaly”[41]. They assume that all the massive

fermions, which is added in order that the gauge symmetry be anomaly-free, have integer ZN

charges*3, and under this assumption, they proved [42] that, among Z2 and Z3 symmetries, only

two symmetries are anomaly-free. One is the standard Z2 R-parity R2, and the other is “baryon

triality” B3.

Dreiner, Luhn, and Thormeier extended this result to arbitrary ZN symmetries, and propose a

new symmetry “proton-hexality” P6 [10], which is anomaly-free without including fractionally

charged heavy particles. Also Luhn and Thormeier [43] studied about the symmetries which is

suitable to the MSSM+N̄ (right-handed neutrino) model and their GUT-compatibility, and pro-

posed other several symmetries.

We write down the charge assignments of the symmetries at Tab. B.2, and allowed terms of the

MSSM at Tab. B.3, as references.

B.3.2 OTHER WAYS BUT R-PARITY

Forget about the matters of high-energy theories, and concentrate on the low-energy effective

theory. What can we say about the MSSM superpotential?

You can see that we have three ways. (Here, PB and PL are the baryon and the lepton parity as

we have introduced.)

(i) R-parity conserving case The first way is to impose a symmetry which forbids both PB-

and PL-violating terms, e.g., P6. In this case the LSP is still stable, and the (renormalizable)

superpotential is

W = WRPC := µHuHd + yui jHuQiŪ j + ydi jHdQiD̄ j + yei jHdLiĒ j. (B.27)

(ii) R-parity violation in lepton sector The second way is to forbid only PB-violating terms with,

for example, the baryon triality B3. Then the LSP cannot be a candidate of the dark matter, but

*3 Adding fractionally charged heavy particles will generally relax the anomaly cancellation conditions.
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proton would not decay. The superpotential is

W = WRPC + κiHuLi +
1
2
λi jkLiL jĒk + λ

′
i jkLiQ jD̄k. (B.28)

(iii) R-parity violation in baryon sector The last way is to use the lepton triality L3 etc. to forbid

only PL-violating terms, with imposing another condition that the LSP is heavier than proton. The

LSP cannot be a dark matter candidate, and the proton decay would not occur as we discussed in

App. 2.1.3. The superpotential is

W = WRPC +
1
2
λ′′i jkŪiD̄ jD̄k. (B.29)

We refer the first way as “R-parity conserving case” or “SUSY with R-parity,” and the other two

ways as “R-parity violating case” or “SUSY without R-parity,” although the symmetry we do or

do not impose is not the R-parity.

The fact that the LSP is stable under PB- and PL-conservation needs some explanation.
First consider the interactions induced from the superpotential. Note that the operators

which induced by the same term in the superpotential have the same R-parity. Since the
conservation of both PB and PL the superfields means the R-parity conservation in the
superfields, the LSP would not decay via the superpotential interaction in this case.

How about the gauge interactions? Supersymmetric gauge interactions are obtained
by “supersymmetrizing” an even number of fields in a gauge interaction operator. Since
this operation does not change the R-parity, the gauge interactions never violate the R-
parity as long as the gauge boson is even in the R-parity. However, now PB and PL are
conserved, and therefore gauge bosons must be R-even. Therefore the LSP would not
decay via the gauge interactions in this case.
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Table B.2 The charge assignments to the MSSM particles (and right-handed neutrino N̄)
of discrete gauge symmetries. Among these symmetries, the R-parity R2, the baryon triality
B3 [42] and the proton hexality P6 [10], are anomaly-free without adding fractionally charged
heavy particles. The other symmetries are Luhn and Tohrmeier’s work [43].

type Q L Ū D̄ Ē Hu Hd N̄

R2 Z2 1 1 1 1 1 0 0 1

B3 Z3 0 2 2 1 2 1 2 0

P6 Z6 0 4 1 5 1 5 1 3

B2 Z2 1 0 1 1 0 0 0 0

L2 Z2 0 1 0 0 1 0 0 1

L3 Z3 0 2 0 0 1 0 0 1

M3 Z3 0 1 2 1 0 1 2 1

R3 Z3 0 0 2 1 1 1 2 2

Z6(102) Z6 0 4 5 1 3 1 5 1

Z6(302) Z6 0 4 3 3 5 3 3 5

Table B.3 Allowed interaction of the MSSM with a discrete symmetry.

disastrous harmful not good L-violating

ŪD̄D̄ QQQL ŪŪD̄Ē QQQHd D̄†QQ LHu LQD̄ LLĒ

R2 X X

B3 X X X

P6

B2 X X X

L2 X X X

L3 X X X

M3

R3 X X

Z6(102)

Z6(302)
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Appendix B.i Higgs Mechanism under R-Parity Violation

If the R-parity is not conserved, the superpotential and the»»»SUSY terms of the MSSM are extended,

and the Higgs Mechanism is modified. Especially the violation is in the lepton sector, we cannot

distinguish the down-type Higgs from the leptons because we have no “lepton number.” In this

appendix we discuss these matters [11].

B.I.1 HIGGS POTENTIAL

First, we put the Higgs superfield and the lepton superfields into a vector

Lα = (L0, Li) := (Hd, Li). (B.30)

(Greek letters to run 1–4, and Latin letters 1–3.) The superpotential is described as

W = yui jHuQiŪ j + µαHuLα +
1
2
yαβ jLαLβĒ j + y

′
αi jLαQiD̄ j, (B.31)

where yαβ j = −yβα j, and the »»»SUSY part is now

L»»SUSY = (Gaugino mass term) −
[
(au)i j̃ūiQ̃ jHu − aαi j

˜̄diQ̃ jL̃α − a′αi j̃ēiL̃ jL̃α + H. c.
]

−
[(

m2
Q

)
i j

Q̃∗i Q̃ j +
(
m2

Ū

)
i j
˜̄u∗i ˜̄u j +

(
m2

D̄

)
i j
˜̄d∗i ˜̄d j +

(
m2

Ē

)
i j
˜̄e∗i ˜̄e j + m2

Hu
H∗uHu

]
−

(
m2

L

)
αβ

L̃∗αL̃β −
[
βαHuL̃α + H. c.

]
.

(B.32)

Here note especially that µα = (µ0, µi) = (µ, κi).

The classical scalar potential for the Higgs bosons is now

VHiggs =
(
|µα|2 + m2

Hu

) (
|H0

u |2 + |H+u |2
)

+
(
m2

L

)
αβ

(̃
e∗αẽβ + ν̃

∗
αν̃β

)
+ |µαν̃α|2 + |µαẽα|2 + 4

∑
i

∣∣∣yαβĩναẽβ
∣∣∣2

+
[
βα

(
H+u ẽα − H0

u ν̃α
)
+ H. c.

]
+
g2

1 + g
2
2

8

(∣∣∣H+u ∣∣∣2 + ∣∣∣H0
u

∣∣∣2 − |̃να|2 − |̃eα|2)2

+
g2

2

8

∣∣∣H+u ν̃∗α + H0
u ẽ∗α

∣∣∣2 −∑
α<β

∣∣∣̃ναẽβ − ẽαν̃β
∣∣∣2 ,

(B.33)

which is very complicated. Here, as usual, not to break the electromagnetic symmetry, we redefine

the up-type Higgs field so that
〈
H+u

〉
= 0. This is the rotation of SU(2)weak. The VEV-condition〈

∂V
∂H+u

〉 ∣∣∣∣∣∣〈H+u 〉=0
= 0 (B.34)
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yields 〈(
βα +

g2

8
ν∗αH0

u
∗
)

ẽα
〉
= 0, i.e., 〈̃eα〉 = 0, (B.35)

from which we see that the electromagnetic symmetry does not break up. Thus we obtain

VHiggs =
(
|µα|2 + m2

Hu

)
|H0

u |2 +
(
m2

L

)
αβ
ν̃∗αν̃β + |µαν̃α|

2

−
[
βαH0

u ν̃α + H. c.
]
+
g2

1 + g
2
2

8

(∣∣∣H0
u

∣∣∣2 − |̃να|2)2
.

(B.36)

Here, as usual, we can set βα > 0 by redefining the phases of Lα.

B.I.2 MASS MATRICES AND ALIGNMENT

This discussion is along Ref. [44].

Now the fields which may have VEVs are H0
u and ν̃α. Define the VEVs of those fields as〈

H0
u

〉
=: vu,

〈̃
να

〉
=: vα. (B.37)

Then the mass matrices of the neutralino and the chargino sector are

L ⊃
[
−1

2
(ψ0) TMNψ0 − (ψ+) TMCψ−

]
+ H. c. (B.38)

MN =


c2M1 + s2M2 cs(M2 − M1) 0 0 0
cs(M2 − M1) s2M1 + c2M2 −gvu gv0 gvi

0 −gvu 0 −µ −κi

0 gv0 −µ 0 0
0 gvi −κi 0 0

 , ψ0 :=


γ̃

Z̃
H̃0

u
ν0
νi


; (B.39)

MC =


M2 gv0/

√
2 gvi/

√
2

gvu/
√

2 µ κi

0 (yd)k jvk −(yd)i jv0 + λik jvk

 , ψ+ :=


W̃+

H̃0
u

e†Ri

 , ψ− :=

W̃
−

e0
e j

 ,
(B.40)

where g := g2/2 cos θW, c := cos θW and s := sin θW.

Here, two eigenvalues of MN are zero, and five are non-zero. This means we have two mass-

less “neutralinos” and five massive ones after the EWPT. Note that these five massive higgsinos

contains one neutrino, which is nearly massless.

The product of the masses can be calculated as∏
i=1...5

mN
i =

(
c2M1 + s2M2

) (
g ‖µ‖ ‖u‖ sin ξ

)2
(B.41)
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where

µ := µα, u := vα, cos ξ :=
µ · u
‖µ‖ ‖u‖ . (B.42)

Here, we can expect that M1 ∼ M2 ∼ ‖µ‖ ∼ 100GeV, and thus the mass of one massive neutrino

can be approximated as
mν ∼ (100GeV) · sin2 ξ, (B.43)

That is, we can expect that ξ is very small, or in other words, µ and u are nearly aligned.

* * *

When we assume κi � µ, we can obtain the following expressions of VEVs:〈
H0

u

〉
=

1
√

2
v · sin β,

〈
H0

d

〉
' 1
√

2
v · cos β, 〈̃νi〉 ' −

κi

µ
· 1
√

2
v · cos β, (B.44)

where v = 246GeV is the Standard Model Higgs VEV (See: Sec. A.2.2), and β, the well-known

value of the MSSM, is defined as

tan β =

〈
H0

u

〉〈
H0

d

〉 . (B.45)

We used this basis in the decay rate approximation of the QQQHd proton decay in Sec. B.2.1.

B.I.3 CONDITIONS FOR ALIGNMENT

As the end of this appendix, let us discuss the conditions on the parameters for the alignment. To

this end, we take the basis where κi = 0. If the alignment is realized, vi must vanish in this basis.

In this basis, the Higgs potential would be

VHiggs =
(
|µ|2 + m2

Hu

)
|H0

u |2 +
(
m2

L

)
αβ
ν̃∗αν̃β + |µ|2

∣∣∣H0
d

∣∣∣2
− βα

[
H0

u ν̃α + H. c.
]
+
g2

1 + g
2
2

8

(∣∣∣H0
u

∣∣∣2 − |̃να|2)2
.

(B.46)

Here, as usual, we can rotate the fields so that vu > 0 and vd > 0, and express them as

vu = v sin θ, vd = v cos θ. (B.47)

(We use θ instead of the usual β.) The VEV-conditions are expressed as(
|µ|2 + m2

Hu

)
sin θ − β0 cos θ − g1

2 + g2
2

4
v2 cos 2θ sin θ = 0, (B.48)[

(|µ|2 +
(
m2

L

)
00

]
cos θ − β0 sin θ +

g1
2 + g2

2

4
v2 cos 2θ sin θ = 0, (B.49)(

m2
L

)
i0

cos θ − βi sin θ = 0. (B.50)
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Therefore, the conditions for the alignment are expressed as

2|µ|2 + m2
Hu
+

(
m2

L

)
00
=

2β0

sin 2θ
, (B.51)

g1
2 + g2

2

4
v2 =

[(
m2

L

)
00
+ |µ|2

]
cos2 θ −

[
m2

Hu
+ |µ|2

]
sin2 θ

cos 2θ
, (B.52)(

m2
L

)
10

β1
=

(
m2

L

)
20

β2
=

(
m2

L

)
30

β3
= tan θ (B.53)

in this basis. Here, the first and the second conditions are the same ones of the R-parity conserving

MSSM, and what is important is the last one.
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Appendix C

Cosmology

In this thesis, we discussed cosmological constraints on the R-parity violating parameters. In the

discussion, we have used the fact that this universe is expanding, where the expansion rate is given

by the Hubble parameter. Now, for the sake of completeness, we will obtain the Hubble expansion

rate in this appendix.

Section C.1 The Expanding Universe

C.1.1 UNDERLYING STRUCTURE

We, the human being, live in this universe. We know that this universe is spatially homogeneous

and isotropic. Or more precisely speaking, this universe is macroscopically homogeneous and

isotropic as far as we know. This is so-called “Cosmological Principle.”*1

Under this axiom, the spacetime metric gi j of the universe is restricted as follows, the

“
Friedmann

Fridman–Lemaître–Robertson–Walker (FLRW) metric:”

ds2 := gµνdxµdxν (C.1)

= dt2 − a(t)2
[
‖dx‖2 + K (x · dx)2

1 − K ‖x‖2

]
(C.2)

= dt2 − a(t)2
[

dr2

1 − Kr2 + r2
(
dθ2 + sin2 θ · dφ2

)]
, (C.3)

where t is the time coordinate, x and (r, θ, φ) are the Cartesian and the polar coordinates for the

(3-dimensional) space, a is a time-dependent parameter, which is called the scale factor, and K

*1 Steven Weinberg mentioned [45] that this principle is valid only for “typical observers,” those who move with the
average velocity of typical galaxies in their respective neighborhoods. This is true surely.
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denotes the curvature of the space,
K > 0 for a closed universe (+1 for spherical),
K = 0 for a flat universe,
K < 0 for an open universe (−1 for hyperspherical).

(C.4)

Under this metric, the Einstein equation is calculated as( ȧ
a

)2
+

K
a2 =

8πG
3

T00, gi j

(
ä
a
+

ȧ2

a2 +
K
a2

)
= 8πGTi j. (C.5)

The definition of the Einstein equation and the detail procedure of this calculation is given in

Appendix C.i.

Recent observations proved that the universe is extremely flat. Therefore we set K = 0 from

now.

C.1.2 ENERGY–MOMENTUM TENSOR

The axiom that the universe is spatially isotropic and homogeneous also leads us an approximation

that the substance of the universe can be approximated as the perfect fluid. The perfect fluid is a

fluid that has no viscosity and no heat conduction. Its energy–momentum tensor T µ
ν is

T µ
ν = diag(ρ,−p,−p,−p). (C.6)

Thus the Einstein equation is now( ȧ
a

)2
=

8πG
3

ρ(t),
ä
a
+

ȧ2

a2 = −8πG · p(t), (C.7)

and therefore

ȧ
a
=

√
8πG

3
ρ(t),

ä
a
= −8πG

3
(ρ + 3p) . (C.8)

The energy density ρ(t) and the pressure p(t) depend on the property of the substance. Let us

calculate these values.

To discuss the energy density and the pressure, we first introduce the well-known momentum

distributions, the Fermi–Dirac (FD), the Bose–Einstein (BE), and the Maxwell–Boltzmann ones:

fMB(k) =
1

e(E−µ)/T , fBE(k) =
1

e(E−µ)/T − 1
, fFD(k) =

1
e(E−µ)/T + 1

, (C.9)

where E :=
√
‖k‖2 + m2 is the energy of the particle. k, µ and m denote the momentum, the

chemical potential, and the mass of the particle, and T is the temperature of the universe.
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When a particle is in a thermal bath, its energy density ρ, pressure p, and number density n, are

given by

ρ = g

∫
d3k

(2π)3 f (k) · E, p = g
∫

d3k
(2π)3 f (k) · ‖k‖

3E
, n = g

∫
d3k

(2π)3 f (k), (C.10)

where f (k) depends on the statistics of the particle.

C.1.3 HUBBLE PARAMETER

◆Massless approximation

Now, almost all have been done. We know that the Hubble parameter is given only by the energy

density ρ (C.7), and ρ can be calculated by the above expression. Thus, theoretically, we can

obtain the Hubble parameter at any temperature.

However, actually, this calculation cannot be done analytically in general, and we cannot ob-

tain the analytical expression of the Hubble parameter, which we want to use in the Boltzmann

equations. Therefore, here we come down to do an approximation, m � T .

If we use the approximation m � T , which means that all the particles are nearly massless, or

the temperature is extremely high, we can continue the calculation analytically. Especially, if we

can approximate µ is small enough, i.e., µ � T , we expand the expression to the 1st order of µ to

obtain the following result:

ρBE = gT 4
[
π2

30
+

3ζ(3)
π2 µ̄

]
, pBE =

1
3
ρBE, nBE = gT 3

[
ζ(3)
π2 +

1
6
µ̄

]
, (C.11)

ρFD = gT 4
[

7π2

240
+

9ζ(3)
4π2 µ̄

]
, pFD =

1
3
ρFD, nFD = gT 3

[
3ζ(3)
4π2 +

π2

12
µ̄

]
, (C.12)

where µ̄ := µ/T .

Now we can calculate the Hubble parameter, which is defined as

H :=
ȧ
a
=

√
8πG

3
ρ(t). (C.13)

The particle which we have and their degrees of freedom are presented in Tab. C.1.*2 As you can

see, the energy density and the pressure is calculated as

ρ(T ) =
π2

30
T 4

(
110 +

7
8
· 110

)
, (C.14)

p(T ) =
π2

90
T 4

(
110 +

7
8
· 110

)
, (C.15)

*2 Also in the table the mood of the mass are presented. “Massive” denotes around 100GeV, and “heavy” denotes
300–1000GeV, which describe only the mood, or the tendency.
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Boson Fermion D.o.F g

Q HEAVY 0 36

Ū HEAVY 0 18

D̄ HEAVY 0 18

L, Ē massive 0 12 + 12

Hu, Hd massive 0 4 + 4

g 0 HEAVY 8

W 0 massive 3

B 0 massive 1

Table C.1 The mood of mass, and the degree of freedom, of the MSSM particles.

○ ○ ○

under this massless approximation.

Finally, we obtain the Hubble parameter

H = ξ
T 2

Mpl
where ξ :=

√
8π
3
π2

30
· 110

(
1 +

7
8

)
≈ 24. (C.16)

(Note that the Planck mass is defined as Mpl := G−1/2.) We used this value, which is approximated

to be constant for simplicity in calculation, in Chap. 4.

Also the second order differential of the scale factor is obtained as

ä
a
= −ξ′ T 4

M2
pl

where ξ′ :=
8π
3
π2

15
· 110

(
1 +

7
8

)
≈ 1.14 ×103. (C.17)

◆General result

Here, we will try to obtain the Hubble parameter without the approximation m � T . We present

numerical results here.

As we can still use the approximation µ � T , or µ̄ � 1, we expand the values as, for example

the energy density ρ of a boson,

ρBE(m̄, µ̄) = ρBE
0 (m̄) + µ̄ρBE

1 (m̄) + O(µ̄2), (C.18)

where m̄ is defined as: m̄ := m/T , as we did in µ̄. We put the numerical result of the energy density

ρ of a massive boson, and fermion, in Fig. C.1 and Fig. C.2, respectively. Also the pressures in

Fig. C.3, and the number densities in Fig. C.4. For the energy density, the approximation seems to

be still good for m . T , and for the pressure and the number density, it is good for only m . T/3.

As we presented in Tab. C.1, we have
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massless: gboson = 12, gfermion = 98

massive: gboson = 26, gfermion = 4

heavy: gboson = 72, gfermion = 8

particles. Then, assuming that the “massive” particles are all m = 100GeV, and “HEAVY” parti-

cles are m = 600GeV, and estimating the energy density of the massive particles from Figs. C.1

and C.2, we can approximate

ρ(T = 100GeV) ≈
∑

BE, FD

[
(g · ρ)massless + (g · ρ)massive + (g · ρ)heavy

]
(C.19)

≈ π2

30
T 4 [12 + 26 · 0.9 + 72 · 0.1] +

7
8
π2

30
T 4 [98 + 4 · 0.9 + 8 · 0.1] , (C.20)

and finally,

H(100GeV) ' 19 · T 2

Mpl
. (C.21)

Here we have ignored µ̄.

This result tells us that our massless approximation is not so bad even when T = 100GeV, our

lowest temperature under consideration.

◆One more note

So far, we have not consider the complexity that the particle might get out of the thermal bath.

When the temperature falls down so that the mass becomes not negligible, the creation processes

become less frequent, and meanwhile, when the particle becomes very dilute due to the expansion

of the universe, the pair annihilation processes also less frequent. These effects make the distri-

bution of the particle different from the original (MB or FD) one, and eventually the particles can

travel freely.

If we would like to discuss the expansion (the value of ȧ) precisely, surely we had to include

these effects. However in this thesis (the main part of thesis: Chap. 3 and Chap. 4), we have

ignored these effects in the calculation of the Hubble parameter for simplicity.
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Fig. C.1 The functions ρBE
i (m̄) normalized by the massless result ρi(0), which describe the

energy density of a massive boson. The blue line is ρBE
0 (m̄)/ρBE

0 (0), and the red line is
ρBE

1 (m̄)/ρBE
1 (0). See Eq. (C.18) for the definition.
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Fig. C.2 The same as Fig. C.1, but for a massive fermion.
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Fig. C.3 The pressures, the same as Fig. C.1 and Fig. C.2. The upper figure is for a massive
boson, and the lower is for fermion. The blue lines for the 0th order (p0), and the red lines for
the 1st order (p1).
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Fig. C.4 The number densities, the same as Fig. C.3.
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Appendix C.i Metric and Einstein Equation

In this appendix, we introduce the valuables which we use to express the curvature of the space,

calculate their values in under Fridman–Lemaître–Robertson–Walker metric, and introduce the

Einstein equation.

C.I.1 THE VALUABLES

When we want to express the curvature of the space, we usually use several valuables which are

derived from metric. At first, we give the definitions of the valuables [45, 46, 47].*3

• Christoffel symbol (affine connection)

Γαµν :=
1
2
gαβ

(
∂

∂xν
gβµ +

∂

∂xµ
gβν −

∂

∂xβ
gµν

)
. (C.22)

• Riemann curvature tensor

Rα
βµν :=

∂

∂xµ
Γαβν −

∂

∂xν
Γαβµ + Γ

α
σµΓ

σ
βν − ΓασνΓσβµ. (C.23)

• Ricci curvature tensor and Ricci curvature scalar

Rµν := Rα
µαν, R := gµνRµν. (C.24)

• Einstein tensor
Gµν := Rµν −

1
2

Rgµν. (C.25)

As the metric is symmetric, i.e., gµν = gνµ, these valuables also have the following features

related to the (anti-)symmetricity:

Γαµν = Γ
α
νµ, Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ, Rµν = Rνµ. (C.26)

*3 Weinberg [45] uses different definitions. He use Rhis
µν = −Rours

µν as the Ricci tensor, thus his Einstein equation is
Rhis
µν − 1

2 gµνg
αβRhis

αβ = −8πTµν.
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C.I.2 VALUES UNDER FLRW METRIC

The FLRW metric is, under our time-respecting notation η = diag(1,−1,−1,−1), given by

g00 = 1, g0i = gi0 = 0, gi j = −a(t)2
(
δi j +

Kxix j

1 − K ‖x‖2

)
. (C.27)

From this metric, we can obtain the Christoffel symbol, the Ricci curvature tensor, and the Ricci

scalar as follows:

Γ0
i j = −

ȧ
a
gi j, Γi

0 j =
ȧ
a
δi

j, Γi
jk = −

K
a2 xig jk, (Others) = 0, (C.28)

R00 = −
3ä
a
, R0i = Ri0 = 0, Ri j = −

(
ä
a
+

2ȧ2

a2 +
2K
a2

)
gi j, (C.29)

R = −6
(

ä
a
+

ȧ2

a2 +
K
a2

)
. (C.30)

G00 = 3
(

ȧ2

a2 +
K
a2

)
, G0i = Gi0 = 0, Gi j =

(
2ä
a
+

ȧ2

a2 +
K
a2

)
gi j. (C.31)

For your information, we give the values in the space-respecting notation η =

diag(−1, 1, 1, 1). In this notation the FLRW metric is modified as

g00 = −1, g0i = gi0 = 0, gi j = a(t)2
(
δi j +

Kxi x j

1 − K ‖x‖2
)
,

and the results are

Γ0
i j =

ȧ
a
gi j, Γi

0 j =
ȧ
a
δi

j, Γi
jk =

K
a2 xig jk,

R00 = −
3ä
a
, Ri j =

(
ä
a
+

2ȧ2

a2 +
2K
a2

)
gi j, R = 6

(
ä
a
+

ȧ2

a2 +
K
a2

)
.
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C.I.3 EINSTEIN EQUATION

The Einstein equation is the equation which describes the gravitational interactions. It is expressed

by the energy-momentum tensor Tµν and the Einstein tensor Gµν as

Gµν = 8πGTµν, (C.32)

where G is the gravitational constant.

Sometimes a term with the cosmological constantΛ is inserted to the Einstein equation,
as

Gµν = 8πGTµν + Λgµν. (C.33)

Then the result (C.8) which we have obtained under the perfect fluid approximation is
modified as

ȧ
a
=

√
8πG

3
ρ +
Λ

3
− K

a2 ,
ä
a
= −4πG

3
(ρ + 3p) +

Λ

3
. (C.34)

Meanwhile, if we add the “dark energy” as a substance which satisfy ρDE(t) = −pDE(t),
the Einstein equation is modified as

ȧ
a
=

√
8πG

3
(ρ + ρDE) − K

a2 ,
ä
a
= −4πG

3
(ρ + 3p) +

8πG
3

ρDE. (C.35)

Therefore inserting the cosmological constant is equivalent to introducing the dark en-
ergy.

Actually it is known that the universe is accelerated, or ä > 0, therefore we need the
dark energy, and it is known that 70% of the whole energy of the universe is the dark
energy. [9]
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